The Effect of Syzygiumpolyanthum Extract in Lipid Profile of Hypercholesterolemic Animal Model

Rachmat Hidayat, Patricia Wulandari

Abstract

Syzygiumpolyanthum (Sp) extract has the potential as an antioxidant, anti-inflammatory, and antidiabetic activity due to the presence of flavonoids. This study aimed to explore the anti hypercholesterolemia potential of Sp leaves extract in rats. Thirty male Wistar rats, ranging from 200-250 grams body weight, were randomly divided into five groups (group 1: normal group; group 2: hypercholesterol rats without treatment; group 3: hypercholesterol rats with simvastatin treatment; group 4: hypercholesterol rat with Sp extract 100 mg/kg BW; group 5: hypercholesterol rats with Sp extract 200mg/kg BW). The induction of hypercholesterolemia rats was done by giving high cholesterol diet (HCD). This study showed that Sp extract and simvastatin treatment have improved HDL levels and normalized the elevated levels of cholesterol and LDL. The antioxidant components were decreased in all hyperlipidemic groups compared to group 1. Sp extract was proven to improve SOD level and catalase as an indication of improvement in antioxidant potential. Sp extract treatment has improved the levels of SOD and catalase as an indication of improvement in the antioxidant potential. In conclusion, our results show that Sp extract can improve the hypercholesterolemic condition through ameliorating dyslipidemia, reducing HMG-CoA content, binding of bile acids, and improving the antioxidant status.

 

 

 

Keywords: antioxidants, hypercholesterolemia, catalase, Syzygium, hyperlipidemias.

 

 

 


Full Text:

PDF


References


DIABETES CANADA CLINICAL PRACTICE GUIDELINES EXPERT COMMITTEE, MANCINI G. B. J., HEGELE R. A., and LEITER L. A. Dyslipidaemia. Canadian Journal of Diabetes, 2018, 42(Supplement 1): S178-S185. http://doi.org/10.1016/j.jcjd.2017.10.019

KORAKAS E., DIMITRIADIS G., RAPTIS A., and LAMBADIARI V. Dietary Composition and cardiovascular risk: A mediator or a bystander? Nutrients, 2018, 10(12): 1912. http://doi.org/10.3390/nu10121912

AQEEL M. T., UR-RAHMAN N., KHAN A., ASHRAF Z., LATIF M., RAFIQUE H., and RASHEED U. Antihyperlipidemic studies of newly synthesized phenolic derivatives: in silico and in vivo approaches. Drug Design, Development and Therapy, 2018, 12: 2443-2453. https://dx.doi.org/10.2147/DDDT.S158554

JEONG S.-M., CHOI S., KIM K., KIM S. M., LEE G., PARK S. Y., KIM Y.‐Y., SON J. S., YUN J.‐M., and PARK S. M. Effect of change in total cholesterol levels on cardiovascular disease among young adults. Journal of the American Heart Association, 2018, 7: e008819. https://doi.org/10.1161/JAHA.118.008819

FERENCE B. A., GINSBERG H. N., GRAHAM I., RAY K. K., PACKARD C. J., BRUCKERT E., HEGELE R. A., KRAUSS R. M., RAAL F. J., SCHUNKERT H., WATTS G. F., BORÉN J., FAZIO S., HORTON J. D., MASANA L., NICHOLLS S. J., NORDESTGAARD B. G., VAN DE SLUIS B., TASKINEN M.-R., TOKGÖZOĞLU L., LANDMESSER U., LAUFS U., WIKLUND O., STOCK J. K., CHAPMAN M. J., and CATAPANO A. L. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. European Heart Journal, 2017, 38(32): 2459-2472. https://dx.doi.org/10.1093/eurheartj/ehx144

HIRANO T. Pathophysiology of diabetic dyslipidemia. Journal of Atherosclerosis and Thrombosis, 2018, 25(9): 771-782. https://dx.doi.org/10.5551/jat.RV17023

ASSEGAF N., & MUHTADI M. The effects of Salam leaf extract (Syzygiumpolyanthum Wight.) on urine volume in the potassium oxonic-induce hyperuricemia mice. Journal of Nutraceuticals and Herbal Medicine, 2019, 2: 29-37. https://doi.org/10.23917/jnhm.v2i1.7637

NORDIN M. L., OTHMAN A. A., KADIR A. A., SHAARI R., OSMAN A. Y., and MOHAMED M. Antibacterial and citotoxic activities of the Syzygiumpolyanthum leaf extract from Malaysia. Veterinary World, 2019, 12(2): 236-242. https://dx.doi.org/10.14202/vetworld.2019.236-242

HIDAYATI M. D., ERSAM T., SHIMIZU K., and FATMAWATI S. Antioxidant activity of Syzygiumpolyanthum extract. Indonesian Journal of Chemistry, 2017, 17(1): 98-105. https://doi.org/10.22146/ijc.23545

LULIANA S., RIZA H., and INDRIYANI E. N. The effect of extraction methods on total phenolic content and antioxidant activity of Salam leaves (Syzygiumpolyanthum) using DPPH (1,1-Diphenyl-2-Picrylhidrazil). Majalah Obat Tradisional (Traditional Medicine Journal), 2019, 24(1): 120-128. https://doi.org/10.22146/mot.33955

HARTANTI L., YONAS S. M. K., MUSTAMU J. J., WIJAYA S., SETIAWAN H. K., and SOEGIANTO L. Influence of extraction methods of bay leaves (Syzygiumpolyanthum) on antioxidant and HMG-CoA Reductase inhibitory activity. Heliyon, 2019, 5(4): e01485. https://dx.doi.org/10.1016/j.heliyon.2019.e01485

SMITH A. J., CLUTTON R. E., LILLEY E., HANSEN K. E. A., and BRATTELID T. PREPARE: guidelines for planning animal research and testing. Laboratory Animal, 2018, 52(2): 135-141. https://doi.org/10.1177/0023677217724823

MARROCCO I., ALTIERI F., and PELUSO I. Measurement and clinical significance of biomarkers of oxidative stress in humans. Oxidative Medicine and Cellular Longevity, 2017, 2017: 6501046. https://dx.doi.org/10.1155/2017/6501046

KATERJI M., FILIPPOVA M., and DUERKSEN-HUGHES P. Approaches methods to measure oxidative stress in clinical samples: Research applications in the cancer field. Oxidative Medicine and Cellular Longevity, 2019, 2019: 1279250. https://dx.doi.org/10.1155/2019/1279250

OWOLABI O. O., JAMES D. B., SANI I., ANDONGMA B. T., FASANYA O. O., and KURE B. Phytochemical analysis, antioxidant and anti-inflammatory potential of Feretia apodanthera root bark extract. BMC Complementary and Alternative Medicine, 2018, 18(12): 16-20. https://doi.org/10.1186/s12906-017-2070-z

BERGHEANU S. C., BODDE M. C., and JUKEMA J. W. Pathophysiology and treatment of atherosclerosis. Netherland Heart Journal, 2017, 25(4): 231-242. https://dx.doi.org/10.1007/s12471-017-0959-2

WIDIATMAJA D. M., PRABOWO G. M., and REJEKI P. S. A long-term ketogenic diet decreases serum insulin-like growth factor-1 level in mice. Journal of Hunan University Natural Sciences, 2021, 48(3): 2-6. http://johuns.net/index.php/journal/article/view/525

GESTO D. S., PEREIRA C. M. S., CERQUETRA N. M. F. S., and SOUSA S. F. An atomic level perspective of HMG-CoA-Reductase: The target enzyme to treat hypercholesterolemia. Molecules, 2020, 25(17): 3891. https://dx.doi.org/10.3390/molecules25173891


Refbacks

  • There are currently no refbacks.