Potential CRISPR-Cas9 Associated Vector Lentivirus for CCR5 Gene Silencing On CD34+ Hematopoetic Cells Intermediate HIV-1 Resistance

Nurul Hidayah, Yuna Annisa Salsabila, Fitriana Kurniasari Solikhah, Rifaatul Laila Mahmudah

Abstract

Potential of CRISPR / Cas9 encapsulated lentivirus vector for silencing the CCR5 gene on CD34+ hematopoietic cells mediating HIV-1 resistance. CRISPR-Cas9 and modified dual guide RNA encapsulated by lentivirus vector can silence CCR5 gene CD34+ hematopoietic cells. The purpose of this research was to determine the use of CRISPR-Cas9 in vivo using hematopoietic stem cells so that it can be a therapeutic modality with the aim of resistance to HIV-1. CRISPR-Cas9 has a specific target on the DNA sequence encoded by the modified guide RNA. This specificity allows CRISPR-Cas9 to reduce the risk of off-targeting the DNA of the host cell. Silencing of the CCR5 gene on CD34+ hematopoietic cells can make its derivative cells resistant to HIV because the CCR5 gene is not expressed as CCR5 chemokines. As a result, the host cell will become immune to HIV infection.

 

Keywords: CCR5, CRISPR/Cas9, Hematopoietik cell CD34+, Lentivirus vector.

 

 


Full Text:

PDF


References


UNAIDS. Global HIV & AIDS statistics — 2020 fact sheet, 2021. https://www.unaids.org/en/resources/fact-sheet

KUMAR A., DWIVEDI A., CHATURVDI A. K., and KUMAR R. Hypertension – the Silent Killer, Awareness of Risk Factors and Complications in Rohilkhand Region. International Journal of Contemporary Medical Research, 2018, 5(3): C35–C37.

JUSTIZ VAILLANT A. A., & GULICK P. G. HIV Disease Current Practice. StatPearls Publishing, Treasure Island, Florida, 2021. https://www.ncbi.nlm.nih.gov/books/NBK534860/

MILONE M. C., & O’DOHERTY U. Clinical use of lentiviral vectors. Leukemia, 2018, 32(7): 1529–1541. https://doi.org/10.1038/s41375-018-0106-0

ALAGOZ M., & KHERAD N. Advance genome editing technologies in the treatment of human diseases: CRISPR therapy (Review). International Journal of Molecular Medicine, 2020, 46(2): 521–534. https://doi.org/10.3892/ijmm.2020.4609

ARALDI R. P., KHALIL C., GRIGNET P. H., TEIXEIRA M. R., DE MELO T. C., MÓDOLO D. G., FERNANDES L. G. V., RUIZ J., and DE SOUZA E. B. Medical applications of clustered regularly interspaced short palindromic repeats (CRISPR/Cas) tool: A comprehensive overview. Gene, 2020, 745: 144636. https://doi.org/10.1016/j.gene.2020.144636

ADLI M. The CRISPR tool kit for genome editing and beyond. Nature Communications, 2018, 9: 1911. https://doi.org/10.1038/s41467-018-04252-2

HIRAKAWA M. P., KRISHNAKUMAR R., TIMLIN J. A., CARNEY J. P., and BUTLER K. S. Gene editing and CRISPR in the clinic: current and future perspectives. Bioscience Reports, 2020, 40(4): BSR20200127. https://doi.org/10.1042/BSR20200127

FAJRIAL A. K., HE Q. Q., WIRUSANTI N. I., SLANSKY J. E., and DING X. A review of emerging physical transfection methods for CRISPR/Cas9-mediated gene editing. Theranostics, 2020, 10(12): 5532–5549. https://doi.org/10.7150/thno.43465

SINGH A., VERMA A. S., and KUMAR V. Chapter 9. HIV and antiretroviral drugs. In: VERMA A. S., & SINGH A. (eds.) Animal Biotechnology. 2nd ed. Academic Press, Boston, Massachusetts, 2020: 173–198.

RAUTENBACH A., & WILLIAMS A. A. Metabolomics as an Approach to Characterise the Contrasting Roles of CCR5 in the Presence and Absence of Disease. International Journal of Molecular Sciences, 2020, 21(4): 1472. https://doi.org/10.3390/ijms21041472

CHAPMAN R., VAN DIEPEN M., GALANT S., KRUSE E., MARGOLIN E., XIMBA P., HERMANUS T., MOORE P., DOUGLASS N., WILLIAMSON A. L., and RYBICKI E. Immunogenicity of HIV-1 Vaccines Expressing Chimeric Envelope Glycoproteins on the Surface of Pr55 Gag Virus-Like Particles. Vaccines, 2020, 8(1): 54. https://doi.org/10.3390/vaccines8010054

LI Z., LI W., LU M., BESS J. JR., CHAO C. W., GORMAN J., TERRY D. S., ZHANG B., ZHOU T., BLANCHARD S. C., KWONG P. D., LIFSON J. D., MOTHES W., and LIU J. Subnanometer structures of HIV-1 envelope trimers on aldrithiol-2-inactivated virus particles. Nature Structural & Molecular Biology, 2020, 27(8): 726–734. https://doi.org/10.1038/s41594-020-0452-2

JIAO X., NAWAB O., PATEL T., KOSSENKOV A. V., HALAMA N., JAEGER D., and PESTELL R. G. Recent Advances targeting CCR5 for Cancer and its Role in Immuno-Oncology. Cancer Research, 2019, 79(19): 4801–4807. https://doi.org/10.1158/0008-5472.CAN-19-1167

NIZAMUDDIN I., KOULEN P., and MCARTHUR C. P. Contribution of HIV Infection, AIDS, and Antiretroviral Therapy to Exocrine Pathogenesis in Salivary and Lacrimal Glands. International Journal of Molecular Sciences, 2018, 19(9): 2747. https://doi.org/10.3390/ijms19092747

RAMDAS P., SAHU A. K., MISHRA T., BHARDWAJ V., and CHANDE A. From Entry to Egress: Strategic Exploitation of the Cellular Processes by HIV-1. Frontiers in Microbiology, 2020, 11: 559792. https://doi.org/10.3389/fmicb.2020.559792

SHIN J., & OH J.-W. Development of CRISPR/Cas9 system for targeted DNA modifications and recent improvements in modification efficiency and specificity. BMB Reports, 2020, 53(7): 341–348. https://doi.org/10.5483/BMBRep.2020.53.7.070

SLEDZINSKI P., NOWACZYK M., and OLEJNICZAK M. Computational Tools and Resources Supporting CRISPR-Cas Experiments. Cells, 2020, 9(5): 1288. https://doi.org/10.3390/cells9051288

KHALIL A. M. The genome editing revolution: review. Journal of Genetic Engineering & Biotechnology, 2020, 18: 68. https://doi.org/10.1186/s43141-020-00078-y

LI H., YANG Y., HONG W., HUANG M., WU M., and ZHAO X. Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. Signal Transduction and Targeted Therapy, 2020, 5: 1. https://doi.org/10.1038/s41392-019-0089-y

JANIK E., NIEMCEWICZ M., CEREMUGA M., KRZOWSKI L., SALUK-BIJAK J., and BIJAK M. Various Aspects of a Gene Editing System—CRISPR–Cas9. International Journal of Molecular Sciences, 2020, 21(24): 9604. https://doi.org/10.3390/ijms21249604

PERISSE I. V., FAN Z., SINGINA G. N., WHITE K. L., and POLEJAEVA I. A. Improvements in Gene Editing Technology Boost Its Applications in Livestock. Frontiers in Genetics, 2021, 11: 614688. https://doi.org/10.3389/fgene.2020.614688

NEWSOM S., PARAMESHWARAN H. P., MARTIN L., and RAJAN R. The CRISPR-Cas Mechanism for Adaptive Immunity and Alternate Bacterial Functions Fuels Diverse Biotechnologies. Frontiers in Cellular and Infection Microbiology, 2021, 10: 619763. https://doi.org/10.3389/fcimb.2020.619763

LI S. Y., CHENG Q. X., WANG J. M., LI X. Y., ZHANG Z. L., GAO S., CAO R. B., ZHAO G. P., and WANG J. CRISPR-Cas12a-assisted nucleic acid detection. Cell Discovery, 2018, 4: 20. https://doi.org/10.1038/s41421-018-0028-z

RYAN D. E., TAUSSIG D., STEINFELD I., PHADNIS S. M., LUNSTAD B. D., SINGH M., VUONG X., OKOCHI K. D., MCCAFFREY R., OLESIAK M., ROY S., YUNG C. W., CURRY B., SAMPSON J. R., BRUHN L., and DELLINGER D. J. Improving CRISPR–Cas specificity with chemical modifications in single-guide RNAs. Nucleic Acids Research, 2018, 46(2): 792–803. https://doi.org/10.1093/nar/gkx1199

ALLEN D., ROSENBERG M., and HENDEL A. Using Synthetically Engineered Guide RNAs to Enhance CRISPR Genome Editing Systems in Mammalian Cells. Frontiers in Genome Editing, 2021, 2: 617910. https://doi.org/10.3389/fgeed.2020.617910

WANG M., GLASS Z. A., and XU Q. Non-viral delivery of genome-editing nucleases for gene therapy. Gene Therapy, 2017, 24(3): 144–150. https://doi.org/10.1038/gt.2016.72

ZHENG X., ZHENG P., SUN J., KUN Z., and MA Y. Heterologous and endogenous U6 snRNA promoters enable CRISPR/Cas9 mediated genome editing in Aspergillus niger. Fungal Biology and Biotechnology, 2018, 5: 2. https://doi.org/10.1186/s40694-018-0047-4

HARTMANN J., MÜNCH R. C., FREILING R. T., SCHNEIDER I. C., DREIER B., SAMUKANGE W., KOCH J., SEEGER M. A., PLÜCKTHUN A., and BUCHHOLZ C. J. A Library-Based Screening Strategy for the Identification of DARPins as Ligands for Receptor-Targeted AAV and Lentiviral Vectors. Molecular Therapy. Methods & Clinical Development, 2018, 10: 128–143. https://doi.org/10.1016/j.omtm.2018.07.001

FRANK A. M., & BUCHHOLZ C. J. Surface-Engineered Lentiviral Vectors for Selective Gene Transfer into Subtypes of Lymphocytes. Molecular Therapy - Methods & Clinical Development, 2019, 12: 19–31. https://doi.org/10.1016/j.omtm.2018.10.006

FISCHER M. D., MGBOJI E., and LIU Z. Pyrite cloning: a single tube and programmed reaction cloning with restriction enzymes. Plant Methods, 2018, 14: 91. https://doi.org/10.1186/s13007-018-0359-7

PAVEL-DINU M., WIEBKING V., DEJENE B. T., SRIFA W., MANTRI S., NICOLAS C. E., LEE C., BAO G., KILDEBECK E. J., PUNJYA N., SINDHU C., INLAY M. A., SAXENA N., DERAVIN S. S., MALECH H., RONCAROLO M. G., WEINBERG K. I., and PORTEUS M. H. Gene correction for SCID-X1 in long-term hematopoietic stem cells. Nature Communications, 2019, 10: 1634. https://doi.org/10.1038/s41467-019-09614-y

BIECHONSKI S., OLENDER L., ZIPIN-ROITMAN A., YASSIN M., AQAQE N., MARCU-MALINA V., RALL-SCHARPF M., TROTTIER M., MEYN M. S., WIESMÜLLER L., BEIDER K., RAZ Y., GRISARU D., NAGLER A., and MILYAVSKY M. Attenuated DNA damage responses and increased apoptosis characterize human hematopoietic stem cells exposed to irradiation. Scientific Reports, 2018, 8: 6071. https://doi.org/10.1038/s41598-018-24440-w

XU L., YANG H., GAO Y., CHEN Z., XIE L., LIU Y., LIU Y., WANG X., LI H., LAI W., HE Y., YAO A., MA L., SHAO Y., ZHANG B., WANG C., CHEN H., and DENG H. CRISPR/Cas9-Mediated CCR5 Ablation in Human Hematopoietic Stem/Progenitor Cells Confers HIV-1 Resistance In Vivo. Molecular Therapy: The Journal of the American Society of Gene Therapy, 2017, 25(8): 1782–1789. https://doi.org/10.1016/j.ymthe.2017.04.027

KHADDOUR K., HANA C. K., and MEWAWALLA P. Hematopoietic Stem Cell Transplantation. StatPearls Publishing, Treasure Island, Florida, 2020.

TSUKAMOTO T. Hematopoietic Stem/Progenitor Cells and the Pathogenesis of HIV/AIDS. Frontiers in Cellular and Infection Microbiology, 2020, 10: 60. https://doi.org/10.3389/fcimb.2020.00060

SHAWKATOVÁ I., BOJTÁROVÁ E., KOVÁČOVÁ M., KLUČKOVÁ K., KUŠÍKOVÁ M., MISTRÍK M., and HOMOLOVÁ M. Individual HLA alleles and risk of graft-versus-host disease after haematopoietic stem cell transplantation from HLA-identical siblings. Biologia, 2020, 75(11): 2045–2052. https://doi.org/10.2478/s11756-020-00510-1

NASSEREDDINE S., RAFEI H., ELBAHESH E., and TABBARA I. Acute Graft Versus Host Disease: A Comprehensive Review. Anticancer Research, 2017, 37(4): 1547–1555. https://doi.org/10.21873/anticanres.11483

WATTS N. L., MARQUES M. B., PEAVEY D. B., INNIS-SHELTON R., SAAD A., AD S., SALZMAN D., LAMB L. S. Jr., and COSTA L. J. Mobilization of Hematopoietic Progenitor Cells for Autologous Transplantation Using Pegfilgrastim and Plerixafor: Efficacy and Cost Implications. Biology of Blood and Marrow Transplantation, 2019, 25(2): 233–238. https://doi.org/10.1016/j.bbmt.2018.09.005

HAWORTH K. G., PETERSON C. W., and KIEM H. P. CCR5-edited gene therapies for HIV cure: Closing the door to viral entry. Cytotherapy, 2017, 19(11): 1325–1338. https://doi.org/10.1016/j.jcyt.2017.05.013

BASILA M., KELLEY M. L., and SMITH A. V. B. Minimal 2’-O-methyl phosphorothioate linkage modification pattern of synthetic guide RNAs for increased stability and efficient CRISPR-Cas9 gene editing avoiding cellular toxicity. PLOS ONE, 2017, 12(11): e0188593. https://doi.org/10.1371/journal.pone.0188593

MU W., ZHANG Y., XUE X., LIU L., WEI X., and WANG H. 5′ capped and 3′ polyA-tailed sgRNAs enhance the efficiency of CRISPR-Cas9 system. Protein & Cell, 2019, 10(3): 223–228. https://doi.org/10.1007/s13238-018-0552-5

ZHOU B., WAN X., WU X., CHEN X., and ZENG F. Path Planning and Tracking in Scenario of Emergency Collision Avoidance. Journal of Hunan University Natural Sciences, 2020, 47(10): 10–18. http://johuns.net/index.php/journal/article/view/445

VARGAS J. E., CHICAYBAM L., STEIN R. T., TANURI A., DELGADO-CAÑEDO A., and BONAMINO M. H. Retroviral vectors and transposons for stable gene therapy: advances, current challenges and perspectives. Journal of Translational Medicine, 2016, 14(1): 288. https://doi.org/10.1186/s12967-016-1047-x

REN S., MENG G., WANG J., and ZHOU L. Stabilized Node-based Smoothed Radial Point Interpolation Method for Multi-field Coupling Analysis of Magneto-electro-elastic Structures. Journal of Hunan University Natural Sciences, 2020, 47(10): 92–99. http://johuns.net/index.php/journal/article/view/452


Refbacks

  • There are currently no refbacks.