Application of Sargassum Cinereum and Rhizobateria as Biosorbent Zn in Batik Wastewater

Sri Lestari, Hernayanti, Oedjijono, Dwi Sunu Windyartini

Abstract

Heavy metals such as Zinc (Zn) in batik wastewater may be reduced with biosorption. Sargassum cinereum and rhizobacteria may be used as a biosorbent as they are cheap, abundant, and easily obtainable. The process of biosorption depends on a biosorbent surface area. A large biosorbent surface area can be made by modifying a tea bag. This study aims to get the mixture ratio of S. cinereum and rhizobacteria isolates (Rb2) to adsorb Zn in batik wastewater and to get rhizobacteria isolates that absorb the highest Zn in batik wastewater. This experimental study was conducted using a split plot design. The adsorption capacity data was analyzed using an F-test with a significance level of 95%. The result shows that the highest content of Zn adsorbed is 0.0595 mg/g-1, on the mixed ratio of S. cinereum and rhizobacteria isolates 1:3 decreasing the efficiency by 84.421%. Isolate Rb2 is the best isolate to adsorb Zn in batik wastewater. A biosorbent mixture packed into modified tea bags effectively removes Zn in batik wastewater.

 

 

Keywords: algae, bacteria, biosorption, heavy metal, tea bag.


Full Text:

PDF


References


TAHA A. W., DAKROURY A. M., El-SAYED G. O., and EL-SALAM S. A. Assessment removal of heavy metals ions from wastewater by Cement Kiln Dust (CKD). Journal of American Science, 2010, 6(12): 910–917. https://www.researchgate.net/publication/268000670_Assessment_Removal_of_Heavy_Metals_Ions_from_Wastewater_by_Cement_Kiln_Dust_CKD

OKUO J. M., SANNI S. B., and AIGBEDION S. U. Selective Biosorption of Heavy Metal Ions from Aqueous Solutions by Pre-Treated Nigerian Fresh Water Algae. Trends in Applied Sciences Research, 2006, 1(1): 83–90. https://doi.org/10.3923/tasr.2006.83.90

MONTAZER-RAHMATI M. M., RABBANI P., ABDOLALI A., and KESHTKAR A. R. Kinetics and equilibrium studies on biosorption of cadmium, lead, and nickel ions from aqueous solutions by intact and chemically modified brown algae. Journal of Hazardous Materials, 2011, 185: 401–407. https://doi.org/10.1016/j.jhazmat.2010.09.047

GHASEMI F. F., DOBARADARAN S., RAEISI A., ESMAILI A., MOHAMMADI M. J., KESHTKAR M., NASAB S. G., and SOLEIMANI F. Data on Fe (II) biosorption onto Sargassum hystrix algae obtained from the Persian Gulf in Bushehr Port, Iran. Data in Brief, 2016, 9: 823–827. https://doi.org/10.1016/j.dib.2016.10.018

AZMAT R., UZMA, and UDDIN F. Biosorption of toxic metals from solid sewage sludge by marine green algae. Asian Journal of Plant Sciences, 2007, 6(1): 42–45. https://doi.org/10.3923/ajps.2007.42.45

SAHMOUNE M. N., LOUHAB K., and BOUKHIAR A. The adsorption of chromium from aqueous solution using dead biomass. Environmental Research Journal, 2008, 2(5): 254–260. https://medwelljournals.com/abstract/?doi=erj.2008.254.260

GUPTA V. K., NAYAK A., and AGARWAL S. Bioadsorbents for remediation of heavy metals: Current status and their future prospects. Environmental Engineering Research, 2015, 20(1): 1–18. https://doi.org/10.4491/eer.2015.018

SARAVANAN A., KUMAR P. S., and PREETHA B. Optimization of process parameters for the removal of chromium(VI) and nickel(II) from aqueous solutions by mixed biosorbents (custard apple seeds and Aspergillus niger) using response surface methodology. Desalination and Water Treatment, 2016, 57(31): 14530–14543. https://doi.org/10.1080/19443994.2015.1064034

BABU E., & PREETHA B. Kinetics and equilibrium studies on biosorption of chromium (VI) by mixed biosorbents. International Journal of ChemTech Research, 2014, 6(2): 4927–4933. http://sphinxsai.com/2014/ch_vol6_no12/1/(4927-4933)%20014.pdf

FOSSO-KAKKEU E., & MULABA-BAFUBIANDI A. F. Review of challenges in the escalation of metal-biosorbing processes for wastewater treatment: Applied and commercialized technologies. African Journal of Biotecnology, 2014, 13(17): 1756–1771. https://doi.org/10.5897/AJB2013.13311

HUBBE M. A., HASAN, S. H., and DUCOSTE, J. J. Cellulosic substrates for removal of pollutants from aqueous systems: a review. 1. Metals. BioResources, 2011, 6(2): 2161–2287. https://bioresources.cnr.ncsu.edu/resources/cellulosic-substrates-for-removal-of-pollutants-from-aqueous-systems-a-review-1-metals/

PATHOMSIRIWONG W., & REANPRAYON P. Biosorption of Acid Dyes by Non-living Aquatic Macrophyte, Hydrilla verticillata. Journal of Environmental Science and Technology, 2012, 5(5): 332-342. https://doi.org/10.3923/jest.2012.332.342

LESTARI S., SUDARMADJI S., TANDJUNG S., and SANTOSA S. Biosorpsi Krom Total dalam Limbah Cair Batik dengan Biosorben yang Dikemas dalam Kantung Teh Celup. Majalah Ilmiah Biologi Biosfera: A Scientific Journal, 2016, 33(2): 71–75. http://dx.doi.org/10.20884/1.mib.2016.33.2.428

LESTARI S., SUDARMADJI, TANDJUNG S.D. et al. Kajian Kualitas Air Kali Wangan yang Tercemar Limbah Cair Batik. Proceding of Pengelolaan Sumber Daya Alam dan Lingkungan, 2015: 553–556.

GUPTA V. K., & RASTAGI A. Biosorption of lead from aqueous solutions by green algae Spirogyra species: Kinetics and equilibrium studies. Journal of Hazardous Materials, 2008, 152(1): 407-414. https://doi.org/10.1016/j.jhazmat.2007.07.028

BABÁK L., ŠUPINOVÁ P., ZICHOVÁ M., BURDYCHOVÁ R., and VÍTOVÁ E. Biosorption of Cu, Zn and Pb by thermophilic bacteria - Effect of biomass concentration on biosorption capacity. Acta Universitatis Agriculturae Et Silviculturae Mendelianae Brunensis, 2012, LX(5): 9–17. https://acta.mendelu.cz/media/pdf/actaun_2012060050009.pdf

SHEIKHA D., ASHOUR I., and ABU AL-RUB F. A. Biosorption of Zinc on Immobilized Green Algae: Equilibrium and Dynamics Studies. The Journal of Engineering Research, 2008, 5(1): 20-29. https://doi.org/10.24200/tjer.vol5iss1pp20-29

KILIÇ Z., ATAKOL O., ARAS S., CANSARAN-DUMAN D., and EMREGUL E. Biosorption properties of Zinc (II) from aqueous solutions by Pseudevernia furfuracea (L.) Zopf. Journal of the Air & Waste Management Association, 2014, 64(10): 1112–1121. https://doi.org/10.1080/10962247.2014.926299

ANSARI M. I., MASOOD F., and MALIK A. Bacterial Biosorption: A Technique for Remediation of Heavy Metals. In: AHMAD I., AHMAD F., and PICHTEL J. (eds.) Microbes and Microbial Technology. Springer, New York, 2011: 283-319. https://doi.org/10.1007/978-1-4419-7931-5_12

JOO J. H., HUSSEIN K. A., and HASSAN S. H. A. Bacteria and Fungi as Alternatives for Remediation of Water Resources Polluting Heavy Metals. Korean Journal of Soil Science and Fertilizer, 2011, 44(4): 600–614. https://doi.org/10.7745/KJSSF.2011.44.4.600

ARIEF V. O., TRILESTARI K., SUNARSO J., INDRASWATI N., and ISMADJI S. Recent progress on biosorption of heavy metals from liquids using low cost biosorbents: Characterization, biosorption parameters and mechanism studies. CLEAN - Soil Air Water, 2008, 36(12): 937–962. https://doi.org/10.1002/clen.200800167

KURNIAWAN A., & EKOWATI N. Mycoremediation of Heavy Metal: A Review. Jurnal Bioteknologi & Biosains Indonesia, 2016, 3(1): 36–45. https://doi.org/10.29122/jbbi.v3i1.21

SUSANTI I., PRATIWI E., FEBRIYANTI C., HELMI H., and FEMBRIYANTO R. K. Screening of Zink (Zn) and Copper (Cu) Accumulating Bacteria from Post Tin Mining Pit Ponds. Akuatik: Jurnal Sumberdaya Perairan, 2012, 6(1): 27-33. https://journal.ubb.ac.id/index.php/akuatik/article/view/900

LUBIS S. S. Bioremediasi Logam Berat Oleh Fungi Laut. Amina, 2019, 1(2): 91–102.

FENG N., GUO X., LIANG S., ZHU Y, and LIU J. Biosorption of heavy metals from aqueous solutions by chemically modified orange peel. Journal of Hazardous Materials, 2011, 185(1): 49–54. https://doi.org/10.1016/j.jhazmat.2010.08.114

SAHA R., SAHA I., NANDI R., GHOSH A., BASU A., GHOSH S. K., and SAHA B. Application of Chattim tree (devil tree,Alstonia scholaris) saw dust as a biosorbent for removal of hexavalent chromium from contaminated water. The Canadian Journal of Chemical Engineering, 2013, 91(5): 814-821. https://doi.org/10.1002/cjce.21703

RUMP S., & BIDYUT S. Removal of hexavalent chromium from contaminated water by adsorption using mango leaves (Mangifera indica). Desalination and Water Treatment, 2014, 52: 1928–1936. https://doi.org/10.1080/19443994.2013.804458

PATRIOTA S. N., CERUTTI M. N., MULHOLLAND D. S., MARQUES M. A., and SCHEIDT G. N. Potential Waste of Agro-Industrial in Developing Adsorbents of Heavy Metals. Periódico Tchê Química, 2010, 6(12): 42-51. http://www.deboni.he.com.br/arquivos_jornal/2016/25/42_Periodico25.pdf


Refbacks

  • There are currently no refbacks.