A REVIEW ON LUPEOL- BENEFICIAL HEALTH ASPETS OF POTENT NATURAL PHYTOSTEROL AND TRITERPENE

Nashra
M.Pharm Research Scholar, Department of Pharmacology, Noida Institute of Engineering and Technology (Pharmacy Institute), Plot no-19, Knowledge Park-II, Greater Noida, Uttar Pradesh-201306, nashrashafiq007@gmail.com

Saumya Das
PHD, Faculty of Pharmacy, Associate Professor, Noida Institute of Engineering and Technology (Pharmacy Institute), Plot no-19, Knowledge Park-II, Greater Noida, Uttar Pradesh-201306

Pratishttha Bharadwaj
M.Pharm Research Scholar, Department of Pharmacology, Noida Institute of Engineering and Technology (Pharmacy Institute), Plot no-19, Knowledge Park-II, Greater Noida, Uttar Pradesh-201306

Himanshu Singh
M.Pharm Research Scholar, Department of Pharmacology, Noida Institute of Engineering and Technology (Pharmacy Institute), Plot no-19, Knowledge Park-II, Greater Noida, Uttar Pradesh-201306

Manas Kumar Das
Director at Orlean College of Pharmacy (Department of Pharmacology), Greater Noida, Uttar Pradesh-201308

ABSTRACT
Conventional frameworks of medication have been dynamically acquiring interest and acknowledgment everywhere in the world, even among the experts of current medication. Several clinically useful medications have come from natural substances like herbal therapies used throughout ancient traditional medicines since they have minimal side effects, are generally inexpensive, but are supposed to be beneficial. Natural triterpenoids, further recognized as phytosterols, are gaining popularity due to their broad range of pharmacological processes. A nutritional triterpene called lupeol would be one of those operatives that have attracted widespread focus from healthcare experts, pharmaceutical advertisers, and experts. Lupeol a triterpene otherwise called Fagarsterol found in white cabbage, green pepper, strawberry, olive, mangoes, and grapes was accounted to have gainful impacts as a restorative and preventive specialist for several problems. In the last 15 years, scientists have worked tirelessly to create such a marvellous compound for its clinical use in the cure of different
illnesses. These investigations promote give an understanding of the system of activity of lupeol and propose that it is a multi-target specialist with tremendous anti-inflammatory potential by focusing on key sub-atomic pathways which include nuclear factor kappa-B (NFκB), Cflip, Fas, Kras, phosphatidylinositol-3-kinase (PI3K)/Akt and Wnt/β-catenin in an assortment of cells. Much more in-vitro as well as preclinical animal research indicates that somehow lupeol might also have anti-inflammatory, anti-microbial, anti/protozoal, anti-proliferative, anti-invasive, anti-angiogenic, or cholesterol-lowering properties. Several research studies have found lupeol's anti-inflammatory activity that inhibits neuroinflammation throughout the cerebellum or triggers neuroprotection by modulating p-38 pathways.

Keywords: Lupeol, Triterpenoids, Phytosterol, Anti-inflammatory, Triterpenes.

Introduction

Natural triterpenoids, further recognized as phytosterols, are gaining popularity due to their broad range of pharmacological processes [1]. Triterpenes are a large class of natural blends with a significant practical value that is generated by arranging squalene epoxide in a chair-chair-chair-boat configuration with evaporation [2]. Triterpenoids seem to be the chief framework constituent of plant molecules, and unrestricted triterpenes, like cholesterol, strengthen phospholipid bilayers in plant epithelial cells. Many triterpenoids possess 28 and 29 carbon atoms or one or two carbon-carbon double bonding, one from the cholesterol nucleus and the other in the hydrocarbon substituent [3]. Triterpenoids primarily generated through vegetable oils, grains, fruits, or vegetables, are consumed in western countries at a rate of 250 mg each day on average. According to statistics, the overall average triterpenoid consumption throughout the United States is 30 mg/kg/day, or in Mediterranean regions, its consumption might exceed 400 mg/kg/day depending on food like olive oil [3].
In the last couple of years, the attention in triterpenes has boosted in an unfamiliar manner. The highest approaches have focused on Triterpenes cholesterol-lowering features. At least 25 clinical studies, 20 patients, and at least 10 main market-oriented triterpenes ingredients are completely priced across the globe are scientific proof of this hypothesis. Assumptions of participation in randomized development with a variety triterpene up to 25 g much as per day are estimated to be over 2400 targets without any negative events. A nutritional triterpene called lupeol would be one of those operatives that have attracted widespread focus from healthcare experts, pharmaceutical advertisers, and experts. In emerging regions, approximately 80% of the inhabitants rely on the conventional antidote, chiefly plant medications besides their medical service requirements, as per the World Health Organisation's (WHO) forecasts \[4-5\]. Contemporary pharmacopeia further encompasses a minimum of 25 percent plant-based or artificial correspondent medications designed on plant secluded paradigm blends. The switchover from synthesized and microbial antibiotics to herbal medicinal products has now become rapidly accepted. India seems to have a unique, contemporaneous significance for the public safety of dozens of therapeutic plants around the globe. Triterpenoids seem to be essential plant bilayer significant elements, and unrestricted triterpenes should be used in plant muscle cell phospholipid bilayers as cholesterol is in epithelial cells of animals \([2]\).

Lupeol

Lupeol could be derived in numerous fruits, including certain olive, fig, mango, strawberry, red grape, as well as in bioactive compounds, along with American ginseng, Shea butter plant, *Tamarindus indica, Celastrus paniculatus, Zanthoxylum riedelianum, Leptadenia hastata, Crataeva nurvala, Bombax ceiba* and *Sebastiania Adenophora* \([6-8]\). Lupeol is a triterpenoid that is biologically active and has numerous alternate therapeutic qualities because of its vast diversity of biological activities, there has been rising involvement in natural triterpenoids which is further classified as phytosterols \([9]\) and the lupeol-containing plants shows in table-1 \([4]\).

Table 1: Lupeol containing plants

<table>
<thead>
<tr>
<th>Sequence number</th>
<th>Herb</th>
<th>Taxonomic name</th>
<th>Contentment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Guava</td>
<td>Psidium guajava</td>
<td>None</td>
</tr>
<tr>
<td>2.</td>
<td>Common fig</td>
<td>Ficus carica</td>
<td>None</td>
</tr>
<tr>
<td>3.</td>
<td>Japanese pear</td>
<td>Pyrus pyrifolia</td>
<td>175 Ig/g small branch</td>
</tr>
<tr>
<td>4.</td>
<td>Olive Fruit</td>
<td>Olea Europ a L</td>
<td>3 Ig/g of fruit</td>
</tr>
<tr>
<td>5.</td>
<td>Cucumber</td>
<td>Cucumis sativus</td>
<td>None</td>
</tr>
<tr>
<td>6.</td>
<td>Carrot</td>
<td>Daucus carota</td>
<td>None</td>
</tr>
<tr>
<td>7.</td>
<td>Capsicum</td>
<td>Capsicum annum</td>
<td>None</td>
</tr>
<tr>
<td>8.</td>
<td>Aloe leaves</td>
<td>Aloe vera L</td>
<td>280 Ig/g fallen leaflet</td>
</tr>
<tr>
<td>9.</td>
<td>Elm plant</td>
<td>Ulmus spp.</td>
<td>880 Ig/g crust</td>
</tr>
</tbody>
</table>

Lupeol is the pentacyclic triterpenoid. Several more items from lupeol were often formulated. The species are generally allocated in the
kingdom of plants but are discovered in nutrition and seeds \(^{10-11}\). Although, there are different species of plants that contain lupeol and some of them show in table-2 \(^{12}\).

Table 2: Different species of plants that contain lupeol

<table>
<thead>
<tr>
<th>Sequence number</th>
<th>Scientific name</th>
<th>Common name</th>
<th>Plant Part Studied</th>
<th>Pharmacological activity</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Bridelia scleroneura</td>
<td>Elliptica Gehrm</td>
<td>Stem bark</td>
<td>Euphor biacea</td>
<td>Stomach ache, stiffness, malformation, and tenderness.</td>
</tr>
<tr>
<td>2.</td>
<td>Leptadenia hastata</td>
<td>Anvara Latex</td>
<td>Asclepiadaceae</td>
<td>Analgesic, lesion cure.</td>
<td>(^{14})</td>
</tr>
<tr>
<td>3.</td>
<td>Diplotropis ferruginea</td>
<td>Sucupira Steembark</td>
<td>Fabaceae</td>
<td>Swelling, genitalia, and abscesses.</td>
<td>(^{15})</td>
</tr>
<tr>
<td>4.</td>
<td>Pimenta racemosa</td>
<td>Bay Rum Tree</td>
<td>Leafllet</td>
<td>Myrtaceae</td>
<td>Various inflammatory activities.</td>
</tr>
<tr>
<td>5.</td>
<td>Milletia versicolor</td>
<td>Pongamia Leafllet</td>
<td>Fagaceae</td>
<td>Pain-reliever, rheumatoid arthritis, and tenderness.</td>
<td>(^{17})</td>
</tr>
<tr>
<td>6.</td>
<td>Strobilanthes callosus</td>
<td>Carvia callosa Root stalk</td>
<td>Acanthaceae</td>
<td>Sore untundines.</td>
<td>(^{18})</td>
</tr>
<tr>
<td>7.</td>
<td>Himathanthus suscuba</td>
<td>Plumeria suscuba Stem bark</td>
<td>Apocynaceae</td>
<td>Flatulence, pile, bloodlessness, stiffness, and</td>
<td>(^{19})</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sequence number</th>
<th>Scientific name</th>
<th>Common name</th>
<th>Plant Part Studied</th>
<th>Pharmacological activity</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.</td>
<td>Euclea natalensis</td>
<td>Nata lguarr</td>
<td>Root Stalk</td>
<td>Ebenaceae</td>
<td>Chronic Asthma.</td>
</tr>
<tr>
<td>9.</td>
<td>Croton pullei</td>
<td>Codiaeum varie gatum</td>
<td>Leafllet</td>
<td>Euphor biacea</td>
<td>Tenderness.</td>
</tr>
<tr>
<td>10.</td>
<td>Anemon raddeana</td>
<td>Radda steolon</td>
<td>Ranunculaceae</td>
<td>Migraine and atrophic arthritis.</td>
<td>(^{22})</td>
</tr>
<tr>
<td>11.</td>
<td>Hemid esmus indicus</td>
<td>Indian Sarasaparla</td>
<td>R救助</td>
<td>Asclepiadaceae</td>
<td>Hydropsy, antioxidant property.</td>
</tr>
<tr>
<td>12.</td>
<td>Emblica officinalis</td>
<td>Amla</td>
<td>Ro ots</td>
<td>Euphor biacea</td>
<td>Anti-inflammatory property.</td>
</tr>
<tr>
<td>13.</td>
<td>Betula pendula</td>
<td>Betulin</td>
<td>The dried bark of a white birch tree.</td>
<td>Betulaeae.</td>
<td>Immuno modulatory, Anti-inflammatory, Anti-bacterial, and regenerating properties.</td>
</tr>
<tr>
<td>14.</td>
<td>Helianthus annuus</td>
<td>Annual sunflower</td>
<td>Dried flo wer</td>
<td>Astereae</td>
<td>Anti-inflammatory property.</td>
</tr>
<tr>
<td>15.</td>
<td>Vitellaria paradoxa</td>
<td>Bam buk-Butter Tree Shea</td>
<td>Sapotaeeae</td>
<td>Anti-inflammatory property.</td>
<td>(^{27})</td>
</tr>
<tr>
<td>16.</td>
<td>Bombax ceiba</td>
<td>Silk coton</td>
<td>Stem</td>
<td>Bombaceae</td>
<td>Antiangiogenic activity.</td>
</tr>
</tbody>
</table>
Physical Qualities of Lupeol and Biogenesis Pathway of Lupeol

Physical qualities of lupeol
The lupeol’s general formula is C_{30}H_{50}O but is displayed through its design in figure: 1a \cite{31}. Its ultraviolet lupeol images appear a hydroxyl feature and thus the olefinic mode in a 3235 and 1640 cm\(^{-1}\) spectrum, with lupeol testing by HPLC-MS confirming a parent ion peak at 409 m/z (M + H-18) (+). Lupeol has a melting point around 215-216 °C as well as a molecular study reveals that it has an exact mass of 426.386166 \cite{1}.

![Chemical structure of lupeol](image)

Figure 1a- Chemical structure of lupeol

Biogenesis Pathway of Lupeol
The triterpene formation of lupeol through plant species is facilitated and portrayed as among the most intricate reactions throughout nature. The lupeol biogenesis is described thoroughly in figure: 1b \cite{32}.

![An illustration depicting the important aspects in the lupeol biogenesis pathway in herb](image)

Figure 1b- An illustration depicting the important aspects in the lupeol biogenesis pathway in herb;
DMAPP= dimethylallyl pyrophosphate, IPP= isopentenyl pyrophosphate, FPS= farnesyldiphosphate synthase, FPP= farnesyl pyrophosphate, SOS= squalene synthase, SQE= squalene epoxidase, OSC= oxidosqualene cyclase, LUS= lupeol synthase.

The cytosol is just the outcome of the progressive initiation of mevalonate (MVA), isopentenyl pyrophosphate (IPP), and dimethylallyl (DMAPP), and farnesyl pyrophosphate (FPP) via acetyl CoA. This effect is precipitated by the farnesyl synthase (FPS). Squalene synthase (SQS) is then converted to squalene by FPP. Squalene epoxidase (SQE), then cyclized by lupeol synthase (LUS), oxidizes squalene to 2, 3-oxidosqualene to form the lupenyl ion. After that, by hydrolysis of the 29-methyl group, lupeol ions are transformed into lupeol \cite{32}.

Lupeol Extraction and Isolation
Extraction of lupeol
Lupeol has been harvested via *Calotropis gigantea* and described by spectral studies for the very first period from a pentacyclic triterpenoid [30]. Lately, careful consideration should be predisposed to *calotropis* variety due to the abundant applicable functions spotted in their rubber [33]. The Genus of *Calotropis* has been uninhabited globally diverse xerophytic conifers encompassing Asia, Africa, and South America’s northeast. There are broadly two non-identical strains dispersed in India, they are- *Calotropis procera* and *Calotropis gigantea*. *Calotropis gigantea* (Asclepiadaceae) is an herbal medicine that, as a folk treatment, is often used as a super-wealthy source of natural substances throughout India, willing to enhance excellent diagnostic including the regulation of fungal cutaneous diseases, antibacterial and healing process [34]. Latex besides clinically relevant medicinal effects has been portrayed [35-36]. Interestingly, its negative impacts obeying infusion, oral administration, or latex cutaneous interaction in mammals were often strongly correlated with the characteristics [37-38]. Moreover, it’s well noticeable that somehow latex does have a sincere poisonousness to the digestion as well as to the systemic circulation including its plasma [39]. Perhaps the division of such latex further into rubber, as well as rubber-free fragments before actual interpretation, offers a better comprehension of its effectiveness and restriction. A rubber-less latex portion seems to be rich in dispersible proteins but instead accounts for much of its therapeutic potential [40].

Isolation of Lupeol

By using a soxhlet extractor, the lyophilized elastic loose portion of the latex (*Calotropis gigantea*) extraction was placed in hot extraction using petrol ether (90 %). Using a rotating evaporator to extract the compound under reduced stress, a dry build-up was obtained (32.16 %). This setup was electrophoresed on some kind of silica gel segment (70-130 cross-sections) using inclination extraction using n-hexane or ethyl acetic acid [41]. Concentrations that are demonstrating the same actions throughout thin-layer chromatography (TLC) have been merged. A sonicated mixture of silica gel G as well as water was dripped across TLC plates. For 2 hours, the plates were heated to 110°C. During one percent vanillin-sulphuric acid, a fuchsia pattern of 0.52 (R₁ value) is being exhibited throughout TLC plates implemented often with n-hexane and ethyl acetate (97:5:2.5 v/v) and perhaps warmed to 110 °C besides 5 minutes. Co-tender loving care with true example and synthetic portrayal utilizing IR and UV unearthly examinations showed that the disengaged substance is lupeol.

Pharmacology of Lupeol

Lupeol as an anti-inflammatory and immunomodulatory agent

Botanical extracts or otherwise substituted derivatives have been devised that seem to be advantageous both for acute and chronic inflammatory actions. Normally, there is redness, sneeze, swelling, and maybe even pain of just four risk factors to every trauma. The far more significant element for one of these systemic inflammations does seem to be nuclear factor kappa -B (NF-κB).

Lupeol is a naturally occurring triterpene that is utilized to decrease the inflammatory reaction and have immunomodulating activities [42]. Numerous examinations have demonstrated that somehow an anti-inflammatory activity of lupeol suppresses cerebellar neuro-inflammation or even elicits neuroproteins via the amplification of p-38 pathways [43]. Dextran Sodium Sulfate
Lupeol as a hyperlipidaemic and cardioprotective

Hyperlipidemia is indeed an important prognostic reason for the growth of cholesterol, cardiac disease, and numerous different myocardial incidents. The phenolic compounds can reduce serum cholesterol levels but are advantageous. It has been operated in rodents to lesser hypercholesterolemic thresholds but also declines action in enzymes like Na+, K+ -ATPase, Ca2+-ATPase, and Mg2+. Lupeol is an ester lupeol linoleate [51].

Crataeva nuvala excluded lupeol stumps or even maintains its completeness of the lysosomal and boosts the threshold of thiol because of its cardiotoxicity protection influence [52]. Therapy with lupeol seems to have a detrimental effect in male Wistar rodents on high blood pressure as well as heart defects. Perhaps the threshold of lipids is also being restored and even the HDL cholesterol composition of dyslipidaemic expanded [53].

Human hepatoma cells often inhibit the concepts of peroxidase controlling protein-1c and-2, fatty acid and synthase, 3-hydroxy-3-methylglutaryl-Coenzyme A and farnesyl-diphosphate farnesyl-transferase-1, which is a complement of such androgenic steroid’s compounds. The hepatoma cell further stifles the responses of other sterols regulatory factors. Cardiac nuclear factor κB and factor necrosis of the tumor – α, higher levels of hyper cholesterol, and reduced nuclear factor κB, only with lupeol medications but also oxidative stress [54]. The cardioprotective influences on lupeol were found or even the lupeol survey has been investigated in CVB3 viral myocarditis triggered by the conventional mouse model.

Lupeol as an anti-protozoal specialist

(DSS) prompts ongoing irritation and their protein restricting site is TNF-α, IL 1 and 2, and NF-κB. Lupeol has an anti-inflammatory specialist which is utilized in regulating colitis and recuperating the colonic action [44]. Lup-20(29)-en-3β-of phenolic product has the strength to repress the cytokine creation that is effective to inflammatory bowel diseases (IBD) [45].

Lupeol as an anti-diabetic

Diabetes mellitus is regularly known as diabetes and a gathering of metabolic conditions that cause high glucose levels over a delayed period. Diabetes is fundamental of two sorts Type-1 and Type-2 Lupeol has been accounted for to go about as an enemy of diabetic action [46]. The lupeol triterpene has been shown to reduce hyperinsulinemia by acting on the insulin receptor and the GLUT 4 protein [47]. In type 2 diabetic male rodents, the lupeol studies reported the effects of super oxidant-dismutase (SOD) and catalase (CAT) enzymes, as well as non-enzyme (Vitamin- C) antioxidants, and reduced antioxidant (SOD, CAT, and Vitamin- C) thresholds throughout the liver.

Lupeol showed comparable impacts of metformin and control of its oxidant proteins [48]. *In-silico* investigations are being used to predict a three-dimensional configuration for both the interplay among particles as well as binding sites. The rat model evaluates and validates the hypoglycemic actions of lupeol and perhaps iso-orientin, which further effectively reduces cholesterol levels of oxidative pressure [49].

Lupeol decoctions in the rodents persuade by streptozotocin (STZ) must have suppressed blood glucose concentrations [50].
Further, many pathogenic protozoa were also revealed for lupeol. For anti-malarial action toward *Plasmodium falciparum* [55], numerous substances were mostly segregated from traditional medicines. The anti-plasmodial action of lupeol is hindered through the use of 3D7 *Plasmodium* species in Schizont transformation. The IC$_{50}$ value is 18 µg/ml and 3, 8 µg/ml appropriately, only with dominant anti-plasmodial implications [56]. Erythrocyte prohibitive suppressed lupeol invasion or even expansion of *Plasmodium falciparum* gets a 7-28 mM. IC$_{50}$ inhibition. Lupeol seems to have a relevant anti-plasmodial action as well as a new anti-malarial trigger [57].

Lupeol as an anti-microbials

Lupeol had been reported to mediate antimicrobial activities opposing pathogens but also lessens minimum inhibitory concentrations of many other MRSA (methicillin-resistant *staphylococcus aureus* antibiotics) antibiotics besides expanding its antibiotic activities against methicillin-resistant *staphylococcus aureus* (MRSA) [58].

Lupeol might have anti-microbial properties, notably for *Candida albicans* because once evaluated for both Gram-positive as well as Gram-negative bacteria [59]. Lupeol-containing anti-microbial action of that same *Visnea mocanera* feeds further showed anti-viral actions [60]. It has been shown to suppress RNA-dependent DNA polymerase (RDDP) activities involved with HIV-1 reverse transcriptase (RT) as well as anti-viral features of α-glucosidase composites [61]. Perhaps the lupeol from the *Maytenus* genus showed significant anti-viral activity but instead low cytotoxicity in LLC-MK2 cells against the dengue virus [62].

Lupeol functions as a nephroprotective

Further, the relevance with lupeol throughout prohibiting renal toxicity or even anti-urolithiasis has been screened. Calcium-oxalate levels are reduced by lupeol or even cytoprotective activity toward free-radical destruction and lessen cadmium levels throughout the kidneys [63]. The kidney cancer mostly in proximal, epithelial tubular cells is renal cell carcinoma (RCC). However, the accumulation of such agonists, like magnesium and glycosaminoglycans deposition [64] deteriorated throughout kidney crystals, along with calcium, oxalate, and uric, as well as in the kidney. Animals have been diagnosed with such an ammonium oxalate 2 percent solution instead for 15 days, which mostly creates hyperoxaluric illness throughout rodents. Renal enzyme levels or even excessive mucus excretion were re-established by lupeol [65].

Lupeol functions as a hepatoprotective

Hepatoprotective influences were also evidenced with lupeol or analogs. Betulin was just the first substance that could reasonably be considered hepatoprotective within rodent livers when bile formations, as well as emission, were assessed after diagnosis [66-67]. Aflatoxin-B$_1$, a secondary fungal metabolism noted for some of its hepatotoxic but rather carcinogenic impacts is less effective via lupeol [68]. In this examination rodent’s preliminary treatment mostly with lupeol got about their serum or liver enzyme levels re-established around near-normal magnitude at the same time even as functions of such enzymatic anti-oxidants and non-enzymatic anti-oxidants GSH (Glutathione), vitamin-C, and vitamin-E levels remained reinstated mostly to control levels. Lupeol additionally restored anti-oxidant enzyme production throughout mice whose
livers had been impaired via oxidative stress caused through 7, 12-dimethylbenz (a) anthracene (DMBA). The decline even in ROS (Reactive oxygen species) generation, and perhaps even the reconstruction for mitochondrial transmembrane capacity, the decline in DNA fragmentation, including corresponding induction of apoptosis, disclosed the novel pathway regarding lupeol's anti-cancer role \[^{[69]}\]. Also, treatment with lupeol considerably standardized alterations adjustments in the hepatocytes with granular cytoplasm. By inhibiting progression and inducing apoptosis in hepatocellular carcinoma SMMC7721 cells, lupeol decreased the severity of the death receptor 3 (DR3). Hence, lupeol has been suggested as a potential cancer chemopreventive agent \[^{[70]}\].

Lupeol as an anti-cancer agent

Lupeol is said to suppress tumor expansion by amplifying crucial signaling events implicated during proliferation, regeneration, or cell death. The much more critical problem would be that lupeol seems to have no toxicity among ordinary human cells at almost the same dosage that it destroys tumor cells \[^{[71-73]}\]. Figure 2 depicts a description of lupeol's mode of action opposing tumor cells \[^{[31]}\].

Figure 2- The sequential diagram addresses the instrument of activity of lupeol is diminishing tumor commencement, elevation, and movement. ROS addresses reactive oxygen species; hRNS addresses reactive nitrogen species; TCF/LEF addresses T-cell factor/lymphoid enhancer factor; NFκB addresses nuclear factor-kappa B; cFLP addresses cell type of FLICE prohibitory protein and B-cell lymphoma-2.

Lupeol functions as an anti-arthritic agent

The anti-arthritic properties of lupeol are being studied in several *in vitro* and *in vivo* arthritis models \[^{[74-79]}\]. Arthritis is a chronic condition that affects cytosolic consistency as well as ligament physiology. Geetha and Varalakshmi (1999a) investigated the function of lupeol in the treatment of arthritis symptoms in a rat model. Arthritis was diagnosed
throughout the right-hand paw would use an intradermal infusion containing 0.1 ml Complete Freund's Adjuvant (CFA; 10 mg heat-killed Mycobacterium tuberculosis in 1 ml paraffin oil). Arthritis rats given lupeol (50 mg/kg for 7 days) had markedly decreased lipoprotein lipase concentrations but higher tendon thresholds. Human arthritis is described by acute tenderness, cartilage deterioration, but also joint stiffness. Lupeol somehow doesn't display any anti-nociceptive or ulcerogenic effects in arthritic animals as likened to well-known anti-inflammatory medications indomethacin or aspirin, indicating that perhaps the mode of function of lupeol persists from those of non-steroidal anti-inflammatory medications.

Toxicity Profile on Lupeol
In animal research, Lupeol was being found to have no toxicity. Even in rats and mice, lupeol taken orally at quite a dosage of 2g/kg caused no detrimental effects, and thus no extinction was detected despite 96 hours of release \(^{[80]}\). Lupeol was studied with the intake of 40-200 mg/kg among rodents beneath divergent obligation (long as well as short-term diagnosis) and found to have no therapeutic efficacy. In mice, lupeol (2 mg/animal, comparable for 80 mg/kg) administered intravenously thrice each week for 28 weeks triggered zero exposure \(^{[80]}\). Lupeol was studied with the intake of 40-200 mg/kg among rodents beneath divergent obligation (long as well as short-term diagnosis) and found to have no therapeutic efficacy. In mice, lupeol (2 mg/animal, comparable for 80 mg/kg) administered intravenously thrice each week for 28 weeks triggered zero exposure. \(^{[80]}\) \(Al-Rehaily et al\) performed an intense poisonousness investigation of lupeol and announced that mice accepting oral organization of lupeol (0.5-4.0 mg/kg) for seven sequential days enrolled no evidence for extinction or even other potential toxicity \(^{[81]}\). Oral dosing of lupeol (50 mg/kg) for back-to-back 18 days didn't create any death or toxic effects in rodents. The latest evidence found that mice accepting intraperitoneal organization of lupeol (40 mg/kg) didn't give any indication of harmfulness or death rates \(^{[82-85]}\). A new report by Sudhhar et al. reported that mice benefited from a lupeol-enhanced eating routine (50 mg/kg/day) for 15 successive days didn't create any therapeutic efficacy. Preetha et al. suggested that oral dosing of lupeol (100 mg/kg) for 7 days didn't cause a death rate or any toxic effects in mice. Collected next to each other, these investigations give persuading proof that lupeol is a non-harmful however exceptionally strong chemoprotective and chemotherapeutic specialist.

Conclusion
A pentacyclic triterpenoid, Lupeol is generally dispersed in the plant realm and is found in different leafy foods. This biogenic triterpene is discovered viable in the event of inflammatory reactions and has immunomodulatory activities. According to the extensive literature review, consuming new fresh fruits would serve as a good source of lupeol content, providing persons with great fitness. Lupeol and a few precursors have been found to have a wide variety of natural activities, as well as the potential to be used as a nutritional supplement to cure cancer, heart disease, or liver illness, as this study demonstrates. Lupeol also showed a tendency to interact with a wide range of markers, affecting or changing growth, malignancy, as well as the cellular stress response. It also exhibited low cytotoxicity in normal tissues and acted synergistically when used in combination treatments, considering it worthy of further research to be used separately or even as a supplement to therapeutically used anti-neoplastic and anti-inflammatory medications in research investigations. When
evaluating any proof of lupeol's potential to suppress malignancy and cure particular diseases, several varieties of factors should be considered. This includes determining the best concentration and exposure time. Because laboratory studies have improved their understanding of lupeol's potential effectiveness in avoiding carcinogenesis while simultaneously worsening the inflammatory response, care should be taken when extrapolating findings from clinical trials to humans based on biological variations. To completely understand the protective effects of lupeol as an anti-carcinogenic or chemotherapeutic specialist, and to also prevent influences, more research is needed.

Acknowledgement
The authors are very thankful to Noida Institute of Engineering and Technology, Pharmacy Institute, Greater Noida, Uttar Pradesh (India) for providing the infrastructure and support to carry out this review work.

Conflict of Interest
All authors hereby declare that there is no financial conflict of interest.

Funding
Nil

References
26. Akihisa T, Yasukawa K, Oinuma H, Kasahara Y, Yamanouchi S, Takido M, Kumaki K, Tamura T. Triterpene alcohols from the flowers of compositae and their anti-

56. Singh A, Mukhtar HM, Kaur H, Kaur L. Investigation of antiplasmodial efficacy of lupeol and ursolic acid isolated from Ficus benjamina
leaves extract. Natural product research. 2020 Sep 1; 34(17):2514-7.

67. Preetha SP, Kanniappan M, Selvakumar E, Nagaraj M, Varalakshmi P. Lupeol ameliorates aflatoxin B1-induced peroxidative hepatic damage in rats. Comparative biochemistry and physiology part C: Toxicology & Pharmacology. 2006 Jul 1; 143(3):333-9.

84. Lee TK, Poon RT, WO JY, Ma S, Guan XY, Myers JN, Altevogt P, and Yuen AP. Lupeol suppresses cisplatin-induced nuclear factor-κB