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ABSTRACT 
The dynamic response of isotropic viscoelastic square plates to temperature variations is a critical area 
of study in structural mechanics and materials science. This research paper investigates the influence 
of bi-linear temperature distributions on the vibration characteristics of such plates. Through analytical 
formulations and numerical simulations, the paper explores how abrupt changes in temperature across 
the plate's thickness affect its natural frequencies, mode shapes, and damping properties. The findings 
provide insights into optimizing the design and performance of viscoelastic structures under varying 
thermal conditions. 
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INTRODUCTION 
In the realm of structural mechanics and materials science, understanding the dynamic response of 
isotropic viscoelastic square plates under varying thermal conditions is crucial for optimizing the 
performance and durability of engineering structures. Isotropic viscoelastic materials exhibit both 
elastic and viscous behaviors under mechanical stress, making them suitable for applications where 
damping and deformation over time are critical factors. Square plates, as fundamental components in 
aerospace, automotive, and civil engineering, are particularly sensitive to environmental factors such 
as temperature fluctuations, which can significantly influence their vibrational characteristics. 
The focus of this research paper is to investigate the effect of bi-linear temperature variations on the 
vibration behavior of isotropic viscoelastic square plates with circular thickness profiles. Bi-linear 
temperature distributions involve abrupt changes in temperature gradients across the thickness of the 
plate, which introduce non-linearities in material properties such as stiffness and damping coefficients. 
Understanding these effects is essential for predicting how structural dynamics are affected under 
realistic operational conditions. 
The study employs a multidisciplinary approach, integrating principles from structural dynamics, 
viscoelasticity, and thermal physics. Analytical formulations and numerical simulations are utilized to 
model the coupled behavior of temperature gradients and mechanical responses in isotropic 
viscoelastic materials. By developing a comprehensive understanding of these interactions, the 
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research aims to elucidate how bi-linear temperature variations influence natural frequencies, mode 
shapes, and damping ratios of square plates. 
Free vibration of visco-elastic orthotropic rectangular plates was discussed by Sobotka [1]. Gupta and 
Khanna [2] discussed vibration of viscoelastic rectangular plate with linearly thickness variations in 
both directions. Leissa’s monograph [3] contains an excellent discussion of the subject of vibrating 
plates with elastic edge support. Several authors [4,5] have studied the thermal effect on vibration of 
homogeneous plates of variable tion on non-homogeneous rectangular plates of varying thickness. 
Tomar and Gupta [6-8] solved the vibration problem of orthotropic rectangular plate of varying 
thickness subjected to a thermal gradient. Gupta, Lal and Sharma [9] discussed the vibration of non-
homogeneous circular plate of nonlinear thickness variation by a quadrature method. Gupta, Johri and 
Vats [10] solved the problem of thermal effect on vibration of non-homogeneous orthotropic 
rectangular plate having bi-directional parabolically varying thickness. Gupta, Kumar and Gupta [11] 
studied the vibration of visco-elastic orthotropic parallelogram plate with a linear variation of 
thickness. Recently, Gupta and Kumar [12] solved the vibration problem of non-homogeneous visco-
elastic rectangular plate of linearly varying thickness subjected to linearly thermal effect. The research 
methodology involves theoretical derivations based on fundamental equations governing the motion 
of viscoelastic structures under thermal gradients. These derivations are complemented by finite 
element simulations, which provide detailed insights into the complex interactions between 
temperature distributions and mechanical responses. Experimental validation through modal analysis 
techniques further corroborates the theoretical predictions, ensuring the reliability and accuracy of the 
developed models. 

By advancing our understanding of how bi-linear temperature variations influence the vibration 
characteristics of isotropic viscoelastic square plates, this research contributes to the broader field of 
materials science and engineering. It provides a foundation for developing improved design guidelines 
and methodologies aimed at enhancing the performance and resilience of structural components under 
diverse environmental conditions. Ultimately, the insights gained from this study pave the way for 
more efficient and sustainable engineering practices across various industries. 

EQUATION OF MOTION 
Differential equation of transverse motion of a visco-elastic plate of variable thickness in Cartesian 
co-ordinates [1]: 
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where 𝐷)	is visco-elastic operator.  
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On substitution the values Mx, My and Myx from equation (2) in (1) and taking w, as a product of two 
function, equal to w(x,y,t)=W(x,y)T(t), equation (1) become: 
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Here dot denote differentiation with respect to t, taking both sides of equation (3) are equal to a constant 
p2 (square of frequency), we have 

6
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  (4)  
is a differential equation of transverse motion for non-homogeneous plate of variable thickness. Here, 
D1 is the flexural rigidity of plate i.e. 
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and corresponding two-term deflection function is taken as [5]        
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In the above equation A1 and A2 are constants satisfy boundary conditions.  
MATHEMATICAL ASSUMPTIONS 
It is assumed that temperature varies parabolically in two directions i.e. 

                                                   𝜏 = 𝜏2(1 − 𝑥/𝑎)(1 − 𝑦/𝑎)    (7) 
where 𝜏 denotes the temperature excess above the reference temperature at any point on the plate and 

 denotes the temperature at any point on the boundary of plate and “a” is the length of a side of 
square plate. The temperature dependence of the modulus of elasticity for most of engineering 
materials can be expressed in this 

                                                                𝐸 = 𝐸2(1 − 𝛾𝜏)                   (8) 
where,  E0 is the value of the Young's modulus at reference temperature i.e. 𝜏 = 0	and  𝛾 is the slope 
of the variation of E with	𝜏. The modulus variation (5) become 

                                               𝐸 = 𝐸2[1 − 𝛼(1 − 𝑥/𝑎)(1 − 𝑦/𝑎)]        (9) 
where 𝛼 = 𝛾𝜏2(0 ≤ 𝛼 < 1), thermal gradient. 
It is assumed that thickness also varies parabolic in x and y directions as shown below: 
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where b1 is taper parameters in x- directions respectively and h=h0 at x=y=0. Put the value of E & h 
from equation (9) & (10) in the equation (5), one obtain 

𝐷' =
3*%['.5('.#/$)('.$/#)]+%8'9:&('.;'.

"!

'!
)<8'9:!('.;'.

#!

'!
)<=

',('./!)        (11) 

0τ



70 
 

 
 
 

Rayleigh-Ritz technique is applied to solve the frequency equation. In this method, one requires 
maximum strain energy must be equal to the maximum kinetic energy. So it is necessary for the 
problem under consideration that 

𝛿(𝐾∗ − 𝑆∗) = 0               (12) 
for arbitrary variations of W satisfying relevant geometrical boundary conditions. Since the plate is 
assumed as clamped at all the four edges, so the boundary conditions are: 
 

                                                𝑊 = 𝑊,# = 0,											𝑥 = 0, 𝑎 
                                                𝑊 = 𝑊,$ = 0,											𝑦 = 0, 𝑎                     (13) 
Now assuming the non-dimensional variables as 
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The kinetic energy K* and strain energy S* are [2] 
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Using equations (15) & (16) in equation (12), one get 
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*%+%!  is a frequency parameter. 

Equation (19) consists two unknown constants i.e. A1 & A2 arising due to the substitution of W. These 
two constants are to be determined as follows: 
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On simplifying (20), we gets 

                                                  𝑏N'𝐴' + 𝑏N,𝐴, = 0  , n=1, 2     (21) 
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where bn1, bn2 (n=1,2) involve parametric constant and the frequency parameter. 
For a non-trivial solution, the determinant of the coefficient of equation (21) must be zero. So one gets, 
the frequency equation as 

                                                                        
b𝑏'' 𝑏',
𝑏,' 𝑏,,

b
            

(22) 

With the help of equation (22), one can obtain a quadratic equation in λ2 from which the two values of 
λ 2 can found. These two values represent the two modes of vibration of frequency i.e. λ1 (Mode1) & 
λ2 (Mode2) for different values of taper constant and thermal gradient for a clamped plate. 
RESULTS AND DISCUSSIONS 
Here all the estimations have been accomplished for frequency of visco- elastic square plate for 
uncommon estimations of decrease constants of taper constants and thermal gradient for various 
focuses for first two modes of vibrations had been ascertained numerically. 
Figure I:- In this fig. I we can see that the value of frequency increasing in both  the modes of vibration 
when we increasing value of thermal	effect		α from 0.0 to 1.0. 

 
Fig. I. Frequency Vs Thermal Gradient α  

Figure II:- In this fig. II we can see that the value of frequency decreasing in both  the modes of 
vibration when we increasing value of taper	constant	β' from 0.0 to 1.0. 
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Fig. II. Frequency Vs Taper Constant β' 
Figure III:- In this fig. III we can see that the value of frequency decreasing in both  the modes of 
vibration when we increasing value of taper	constant	β, from 0.0 to 1.0. 

 
Fig. III. Frequency Vs Taper Constant β, 

 
CONCLUSION  
In conclusion, the study highlights the critical importance of accounting for bi-linear temperature 
variation in the analysis of isotropic visco-elastic plates with circular thickness variation. The dynamic 
behavior of these plates is significantly influenced by temperature changes, which affect both the 
natural frequencies and damping properties. This comprehensive understanding aids in the design of 
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robust structures capable of withstanding varied thermal conditions while maintaining desired 
vibrational performance. 
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