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Abstract

This article presents sharp lower and upper bounds for yz(G) in term of diam (G). Recall that the
eccentricity of vertex v in ecc (v) = max{d(u,w):w € V} and the diameter of G is diam (G) = max{
ecc (v): v € V}. It has been assumed throughout this article that G is a nontrivial graph of order n> 2.
‘Bounds on Roman domination number of a graph G containing cycles, in terms of its girth’ has been
presented. Recall that the girth of G (denoted by g(QG)) is the length of the smallest cycle in G. Assume
throughout this article that G is a non-trivial graph of order n > 3 and contains a cycle.
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Theorem 1
If a graph G has diameter three, then ysg(G) < 38 Furthermore, this bound is sharp for infinite family
of graphs.
Proof.
Since G has diameter three,
N (u) dominates V(G) for all vertex u € V(G).
Now, let u € V(G) and deg(u) = 6.
Define f:V(G) - {0,1,2,3} by f(x) = 3 forx € N(u) and
f(x) = Ootherwise.
Obviously fis a strong roman domination function of G.
Thus ysz(G) < 34.
To prove sharpness, let G be obtained from Cartesian product
P, [K,, =4 by adding a new vertex x and jointing it to exactly one vertex at each copy of K.
Obviously, diam(G) = 3 and ysx(G) = 6 = 36.
This completes the proof.

Theorem 2

For a connected graph G, Ysr (G) > [diamz(G)+3.|'

Furthermore, this bound is sharp for P; and P,.
Proof.
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The statement is obviously true for K5 .

Let G be a connected graph of order n > 4 and f = (V,, V1, V,, V3) be a ysg(G) —function.

Suppose that P = v, v,. . . Vgigm(6)+1 1S @ diametral path in G.

This diametral path includes at most three edges from the induced subgraph G [N [v]] foreachv € V;
U, uVs.

Let E' = {v;v;4, | 1 < i < diam(G)} N Upepruraurs E(G[N[V]]).

Then the diametral path contains at most |V5] — 1 edges not in E’, joining the neighborhoods of the
vertices of V3.

Since G is a connected graph of order at least 4, V3 # @.

Hence, diam(G) < 2|V,| + 2|Vy| + 2[V5| + (Vo] — 1)

< 2ysp(G) -3

diam(G)+3
Ysr(G) = [%]

This completes the proof.

Theorem 3
For any connected graph G on n vertices ysz(G) < n.
Furthermore, this bound is sharp.
Proof.
Let P = v1V; . .. Vgiam(g)+1 be a diametral path in G.
Moreover, let f = (V,, V1, Vo, V3) be a ysx (P)- function.
By theorem K, the weight of f is diam(G) + 1.
Define g: V(G) - {0,1,2,3} by g(x) = f(x) for x € V(P) and
g(x) =1 forx € V(G)(P).
Obviously g is a strong roman domination function for G.
Hence, sz (G) < w(f) + (n-diam(G)-1)
diam(G) + 1 + n-diam(G) — 1
n
Ysr(G) <n.
To prove sharpness,
Let G be obtained from a path P = v, v,. .. vg, (k = 2)
By adding a pendant edge v3,,.
Obviously, G achieves the bound
This completes the proof.
Theorem 4
For any connected graph G of order n with § > 3
Ysr(G) =n-(6-2)
Proof.
Let P=v1v; . .. Vgigm(c)+1 b€ a diametral path in G and
f =Wy, Vi, Vy, V3) be a ysg(P) — function for which |V;| is minimized and V, is a 2 — packing.
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Obviously, |V,| diam(G) + 1
LetV,={uy,...,u,} where k = diam(G) + 1
Since P is a diametral path, each vertex of V, has at least § - 2 neighbors in V(G)(P) and N(u;) N
N(uj) = @ ifu; # u;.
Define g: V(G) - {0,1,2,3} by g(x) = f(x)for x € V(P),
g(x) =0 for x € UX_, N(u;) N (V(G)(P)) and g(x) =1
When x € V(G) U N(u;).
Obviously g is a strong roman domination function for G and
Ysr(G) < w(g)
w(f) + n-diam(G)-1- (6-2)
diam(G) + 1 + n-diam(G)-1- (6 — 2)
Ysr(G) <n-(6—2)
This completes the proof.

Theorem 5
If G = P,, then y53(G) = 5.
Proof.

G can be draw as follows

%
vi v2 v3 v4

Figure 5.1 P,
Define f(v,) = 0, f(v,) =3, f(v3) =0, f(vs) = 2.
Then f is a strong roman domination function with f(v) = 5.
We have to prove that f is minimal strong roman domination function.
Suppose there is a minimal strong roman domination function g such that g < f.

Case (1).

Let g(v,) = 0, then g(v,) = 3.
If g(v;) = 0, theng (v,) must be 2 V 3, which impliesg > f, a contradiction.
If g(vg) = 1, then g(v,) = 2 here g > f, a contradiction.
If g(v3) = 2, then g(v,) # 0, now g is not minimal, a contradiction.
If g(v3) = 3,theng > f,a contradiction.
Case (2).

Let g(v,) = 1, theng(v,) = 2.

If g(v3) = 0, then g(v,) = 3, which implies g > f,a contradiction.
If g(v;) = 1V 2, theng(v,) # 0,hereg > f,a contradiction.
If g(v;) = 3, then obviously g > f, a contradiction.
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Case (3).

Let g(vy) = 2.
If g(v,) = 0, then g(v;) = 3, which implies g > f, a contradiction.
Ifg(v,) = 1, then for any value ofg and g(v,),g > f, a contradiction.
If g(v,) = 2, then for any value of g(v3) and g(v,), g = f,a contradiction.
If g(v,) = 3, then clearly g > f,a contradiction.
Case (4).

Let g(v,) = 3.
If g(v,) =0, and g(v3) = 0, then g(v,) = 3, here g > f,a contradiction.
If g(v,) = O0and g(v3) = 1, then g(v,) = 2, which implies g > f, a contradiction.
If g(v,) =0 and g(v3) = 2, then g(v,) # 0, which implies g > f,a contradiction.
If g(v,) = 0 and g(v3) = 3, then any value of g(v,),g > f, a contradiction.
If g(v,) = 1, then g(v3) = 2,here g > f,a contradiction.
If g(v,) = 2, then all the value of g(v5) and g(v,), g > f, a contradiction.
Ifg(v3) = 3,clearlyg > f, a contradiction.
Thus all the above cases, we get a contradiction.
Hence fis minimal strong roman domination function.

This completes the proof.

Theorem 6
For a graph G of order n with g(G) = 3 we have ysz(G) < g(G).
Proof.
First note that if G is an n —cycle then ysx(G) = n.
Now, let C be a cycle of length g(G) in G.
If g(G) = 3V 4, then we need at least 1 or 2vertices, respectively, to dominate the vertices of C the
statement follows by theorem 7.2.
Let g(G) = 5. Then a vertex not inV/(C), can be adjacent to at most one vertex of Cfor otherwise we
obtain a cycle of length less than g(G)which is a contradiction. Now the result follows by theorem
7.2.
Ysr(G) = g(G).
This completes the proof.
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