BOUNDS IN STRONG ROMAN DOMINATION

K．Selvakumar
Department of Mathematics，Government Arts and Science College，Valparai－ 642 127，Tamilnadu， INDIA，e－mail：selvakumar6974＠gmail．com

－Dr．M．Kamaraj

Principal，Government Arts and Science College，Vedaranyam，Tamil Nadu 614 810，INDIA． e－mail：kamarajm17366＠gmail．com

Abstract

This article presents sharp lower and upper bounds for $\gamma_{R}(G)$ in term of diam（G）．Recall that the eccentricity of vertex v in ecc $(v)=\max \{d(u, w): w \in V\}$ and the diameter of G is diam $(\mathrm{G})=\max \{$ $\operatorname{ecc}(v): v \in V\}$ ．It has been assumed throughout this article that G is a nontrivial graph of order $\mathrm{n} \geq 2$ ． ＇Bounds on Roman domination number of a graph G containing cycles，in terms of its girth＇has been presented．Recall that the girth of G（denoted by $g(G)$ ）is the length of the smallest cycle in G．Assume throughout this article that G is a non－trivial graph of order $\mathrm{n} \geq 3$ and contains a cycle． Key Words：Roman domination，Strong Roman domination，Bounds．

Theorem 1

If a graph G has diameter three，then $\gamma_{S R}(G) \leq 3 \delta$ Furthermore，this bound is sharp for infinite family of graphs．

Proof．

Since G has diameter three，
$N(u)$ dominates $V(G)$ for all vertex $u \in V(G)$ ．
Now，let $u \in V(G)$ and $\operatorname{deg}(u)=\delta$ ．
Define $f: V(G) \rightarrow\{0,1,2,3\}$ by $f(x)=3$ for $x \in N(u)$ and
$f(x)=0$ otherwise．
Obviously f is a strong roman domination function of G ．
Thus $\gamma_{S R}(G) \leq 3 \delta$ ．
To prove sharpness，let G be obtained from Cartesian product
$P_{2} \square K_{m} \geq 4$ by adding a new vertex x and jointing it to exactly one vertex at each copy of K_{m} ．
Obviously， $\operatorname{diam}(G)=3$ and $\gamma_{S R}(G)=6=3 \delta$ ．
This completes the proof．

Theorem 2

For a connected graph $G, \gamma_{S R}(G) \geq\left\lceil\frac{\operatorname{diam}(G)+3}{2}\right\rceil$ ．
Furthermore，this bound is sharp for P_{3} and P_{4} ．

Proof．

The statement is obviously true for K_{3}.
Let G be a connected graph of order $n \geq 4$ and $f=\left(V_{0}, V_{1}, V_{2}, V_{3}\right)$ be a $\gamma_{S R}(G)$-function.
Suppose that $\mathrm{P}=v_{1} v_{2} \ldots v_{\operatorname{diam}(G)+1}$ is a diametral path in G.
This diametral path includes at most three edges from the induced subgraph $G[N[v]]$ for each $v \in V_{1}$ $\cup V_{2} \cup V_{3}$.
Let $E^{\prime}=\left\{v_{i} v_{i+1} \mid 1 \leq i \leq \operatorname{diam}(G)\right\} \cap \cup_{v \in V 1 \cup V 2 \cup V 3} E(G[N[v]])$.
Then the diametral path contains at most $\left|V_{3}\right|-1$ edges not in E^{\prime}, joining the neighborhoods of the vertices of V_{3}.
Since G is a connected graph of order at least $4, V_{3} \neq \emptyset$.
Hence, $\operatorname{diam}(G) \leq 2\left|V_{2}\right|+2\left|V_{1}\right|+2\left|V_{3}\right|+\left(\left|V_{2}\right|-1\right)$

$$
\begin{aligned}
\leq 2 \gamma_{S R}(G)-3 \\
\gamma_{S R}(G) \geq\left\lceil\frac{\operatorname{diam}(G)+3}{2}\right\rceil
\end{aligned}
$$

This completes the proof.

Theorem 3

For any connected graph G on n vertices $\gamma_{S R}(G) \leq n$.
Furthermore, this bound is sharp.

Proof.

Let $P=v_{1} v_{2} \ldots v_{\operatorname{diam}(G)+1}$ be a diametral path in G.
Moreover, let $f=\left(V_{0}, V_{1}, V_{2}, V_{3}\right)$ be a $\gamma_{S R}(P)$ - function.
By theorem K , the weight of f is $\operatorname{diam}(G)+1$.
Define $g: V(G) \rightarrow\{0,1,2,3\}$ by $g(x)=f(x)$ for $x \in V(P)$ and $g(x)=1$ for $x \in V(G)(P)$.
Obviously g is a strong roman domination function for G.
Hence, $\gamma_{S R}(G) \leq w(f)+(n-\operatorname{diam}(G)-1)$

$$
\operatorname{diam}(G)+1+n-\operatorname{diam}(G)-1
$$

n

$$
\gamma_{S R}(G) \leq n
$$

To prove sharpness,

$$
\text { Let } G \text { be obtained from a path } P=v_{1} v_{2} \ldots v_{3 k}(k \geq 2)
$$

By adding a pendant edge $v_{3 u}$.
Obviously, G achieves the bound
This completes the proof.

Theorem 4

For any connected graph G of order n with $\delta \geq 3$

$$
\gamma_{S R}(G) \leq n-(\delta-2)
$$

Proof.
Let $P=v_{1} v_{2} \ldots v_{\operatorname{diam}(G)+1}$ be a diametral path in G and
$f=\left(V_{0}, V_{1}, V_{2}, V_{3}\right)$ be a $\gamma_{S R}(P)-$ function for which $\left|V_{1}\right|$ is minimized and V_{2} is a $2-$ packing.

Obviously, $\left|V_{2}\right| \operatorname{diam}(G)+1$
Let $V_{2}=\left\{u_{1}, \ldots, u_{k}\right\}$ where $k=\operatorname{diam}(G)+1$
Since P is a diametral path, each vertex of V_{2} has at least $\delta-2$ neighbors in $V(G)(P)$ and $N\left(u_{i}\right) \cap$
$N\left(u_{j}\right)=\emptyset$ if $u_{i} \neq u_{j}$.
Define $g: V(G) \rightarrow\{0,1,2,3\}$ by $g(x)=f(x)$ for $x \in V(P)$,
$g(x)=0$ for $x \in \cup_{i=1}^{k} N\left(u_{i}\right) \cap(V(G)(P))$ and $g(x)=1$
When $x \in V(G) \cup N\left(u_{i}\right)$.
Obviously g is a strong roman domination function for G and

$$
\begin{aligned}
& \gamma_{S R}(G) \leq w(g) \\
& w(f)+n-\operatorname{diam}(G)-1-(\delta-2) \\
& \operatorname{diam}(G)+1+n-\operatorname{diam}(G)-1-(\delta-2) \\
& \gamma_{S R}(G) \leq n-(\delta-2)
\end{aligned}
$$

This completes the proof.

Theorem 5

If $G=P_{4}$, then $\gamma_{S R}(G)=5$.
Proof.
G can be draw as follows

Figure $5.1 P_{4}$
Define $f\left(v_{1}\right)=0, f\left(v_{2}\right)=3, f\left(v_{3}\right)=0, f\left(v_{4}\right)=2$.
Then f is a strong roman domination function with $f(v)=5$.
We have to prove that f is minimal strong roman domination function.
Suppose there is a minimal strong roman domination function g such that $g<f$.

Case (1).

Let $g\left(v_{1}\right)=0$, then $g\left(v_{2}\right)=3$.
If $g\left(v_{3}\right)=0$, then $g\left(v_{4}\right)$ must be $2 \vee 3$, which implies $g \geq f$, a contradiction.
If $g\left(v_{3}\right)=1$, then $g\left(v_{4}\right)=2$ here $g>f$, a contradiction.
If $g\left(v_{3}\right)=2$, then $g\left(v_{4}\right) \neq 0$, now g is not minimal, a contradiction.
If $g\left(v_{3}\right)=3$, then $g>f$, a contradiction.
Case (2).
Let $g\left(v_{1}\right)=1$, then $g\left(v_{2}\right)=2$.
If $g\left(v_{3}\right)=0$, then $g\left(v_{4}\right)=3$, which implies $g>f$, a contradiction.
If $g\left(v_{3}\right)=1 \vee 2$, then $g\left(v_{4}\right) \neq 0$,here $g \geq f$, a contradiction.
If $g\left(v_{3}\right)=3$, then obviously $g>f$, a contradiction.

Case (3).

Let $g\left(v_{1}\right)=2$.
If $g\left(v_{2}\right)=0$, then $g\left(v_{3}\right)=3$, which implies $g>f$, a contradiction.
$\operatorname{If} g\left(v_{2}\right)=1$, then for any value of g and $g\left(v_{4}\right), g>f$, a contradiction.
If $g\left(v_{2}\right)=2$, then for any value of $g\left(v_{3}\right)$ and $g\left(v_{4}\right), g \geq f$, a contradiction.
If $g\left(v_{2}\right)=3$, then clearly $g>f$, a contradiction.
Case (4).
Let $g\left(v_{1}\right)=3$.
If $g\left(v_{2}\right)=0$, and $g\left(v_{3}\right)=0$, then $g\left(v_{4}\right)=3$, here $g>f$, a contradiction.
If $g\left(v_{2}\right)=0$ and $g\left(v_{3}\right)=1$, then $g\left(v_{4}\right)=2$, which implies $g>f$, a contradiction.
If $g\left(v_{2}\right)=0$ and $g\left(v_{3}\right)=2$, then $g\left(v_{4}\right) \neq 0$, which implies $g>f$, a contradiction.
If $g\left(v_{2}\right)=0$ and $g\left(v_{3}\right)=3$, then any value of $g\left(v_{4}\right), g>f$, a contradiction.
If $g\left(v_{2}\right)=1$, then $g\left(v_{3}\right)=2$, here $g>f$, a contradiction.
If $g\left(v_{2}\right)=2$, then all the value of $g\left(v_{3}\right)$ and $g\left(v_{4}\right), g>f$, a contradiction.
If $g\left(v_{3}\right)=3$,clearly $g>f$, a contradiction.
Thus all the above cases, we get a contradiction.
Hence f is minimal strong roman domination function.
This completes the proof.

Theorem 6

For a graph G of order n with $g(G) \geq 3$ we have $\gamma_{S R}(G) \leq g(G)$.

Proof.

First note that if G is an $n-$ cycle then $\gamma_{S R}(G)=n$.
Now, let C be a cycle of length $g(G)$ in G.
If $g(G)=3 \vee 4$, then we need at least 1 or 2vertices, respectively, to dominate the vertices of C the statement follows by theorem 7.2.
Let $g(G) \geq 5$. Then a vertex not $\operatorname{in} V(C)$, can be adjacent to at most one vertex of C for otherwise we obtain a cycle of length less than $g(G)$ which is a contradiction. Now the result follows by theorem 7.2.

$$
\gamma_{S R}(G) \geq g(G)
$$

This completes the proof.

References

[1] K. Selvakumar and M. Kamaraj and, Strong Roman domina-tion in graphs, (Submitted).
[2] E. J. Cockayne, P. A. Dreyer, S. M. Hedetniemi and S. T. Hedetniemi, Roman domination in graphs, Discrete Math., 278 (2004), 11 \{22.
[3] P. A. Dreyer, Applications and variations of domination in graphs, Ph.D. Thesis, New Brunswick, New Jersey, 2000.
[4] O. Favaron, H. Karamic, R. Khoeilar and S. M. Sheikholeslami, On the Roman domination number of a graph, Discrete Math., 309 (2009), 3447 \{ 3451.
[5] M. A. Henning, Defending the Roman empire from multiple attacks, Discrete Math., 271 (2003), 101 \{115.
[6] T. Kraner Sumenjak, P. Parlic and A. Tepeh, On the Roman domination in the lexicographic product of graphs, Discrete Appl. Math., 160 (2012), $2030\{2036$.
[7] P. Parlic and J. Zerovnik, Roman domination number of the Cartesian prod-ucts of paths and cycles, Electron. J. Combin., 19(3) (2012), \#P19.
[8] I. Strewart, Defend the Roman empire, Sci. Amer., 28(6) (1999), 136\{139.
[9] F. Xueliang, Y. Yuausheng and J. Bao, Roman domination in regular graphs, Discrete Math., 309(6) (2009), $1528\{1537$.

