第 50 卷第 09 期 2023 年 9 月

Open Access Article

BOUNDS IN STRONG ROMAN DOMINATION

K. Selvakumar

Department of Mathematics, Government Arts and Science College, Valparai- 642 127, Tamilnadu, INDIA, e-mail: <u>selvakumar6974@gmail.com</u>

Dr. M. Kamaraj

Principal, Government Arts and Science College, Vedaranyam, Tamil Nadu 614 810, INDIA. e-mail: <u>kamarajm17366@gmail.com</u>

Abstract

This article presents sharp lower and upper bounds for $\gamma_R(G)$ in term of diam (G). Recall that the eccentricity of vertex v in ecc (v) = max{ $d(u, w): w \in V$ } and the diameter of G is diam (G) = max{ ecc (v): $v \in V$ }. It has been assumed throughout this article that G is a nontrivial graph of order $n \ge 2$. 'Bounds on Roman domination number of a graph G containing cycles, in terms of its girth' has been presented. Recall that the girth of G (denoted by g(G)) is the length of the smallest cycle in G. Assume throughout this article that G is a non-trivial graph of order $n \ge 3$ and contains a cycle. *Key Words: Roman domination, Strong Roman domination, Bounds*.

Theorem 1

If a graph *G* has diameter three, then $\gamma_{SR}(G) \leq 3\delta$ Furthermore, this bound is sharp for infinite family of graphs.

Proof.

Since *G* has diameter three, N(u) dominates V(G) for all vertex $u \in V(G)$. Now, let $u \in V(G)$ and $deg(u) = \delta$. Define $f:V(G) \rightarrow \{0,1,2,3\}$ by f(x) = 3 for $x \in N(u)$ and f(x) = 0 otherwise. Obviously *f* is a strong roman domination function of *G*. Thus $\gamma_{SR}(G) \leq 3\delta$.

To prove sharpness, let G be obtained from Cartesian product

 $P_2 \square K_m \ge 4$ by adding a new vertex x and jointing it to exactly one vertex at each copy of K_m . Obviously, diam(G) = 3 and $\gamma_{SR}(G) = 6 = 3\delta$.

This completes the proof.

Theorem 2

For a connected graph *G*, $\gamma_{SR}(G) \ge \lceil \frac{diam(G)+3}{2} \rceil$. Furthermore, this bound is sharp for P_3 and P_4 . **Proof.**

> Received: August 04, 2023 / Revised: August 30, 2023 / Accepted: September 18, 2023 / Published: September 30, 2023 About the authors:K. Selvakumar

Corresponding author-Email: selvakumar6974@gmail.com

The statement is obviously true for K_3 .

Let G be a connected graph of order $n \ge 4$ and $f = (V_0, V_1, V_2, V_3)$ be a $\gamma_{SR}(G)$ -function. Suppose that $P = v_1 v_2 \dots v_{diam(G)+1}$ is a diametral path in *G*.

This diametral path includes at most three edges from the induced subgraph G[N[v]] for each $v \in V_1$ $\cup V_2 \cup V_3.$

Then the diametral path contains at most $|V_3| - 1$ edges not in E', joining the neighborhoods of the vertices of V_3 .

Since G is a connected graph of order at least 4, $V_3 \neq \emptyset$. $(C) \sim 2|U| + 2|U| + 2|U| + (|U|)$

Hence,
$$diam(G) \le 2|V_2| + 2|V_1| + 2|V_3| + (|V_2| - 1)$$

 $\le 2\gamma_{SR}(G) - 3$

$$\gamma_{SR}(G) \ge \left\lceil \frac{dum(G)+3}{2} \right\rceil$$

This completes the proof.

Theorem 3

For any connected graph *G* on *n* vertices $\gamma_{SR}(G) \leq n$.

Furthermore, this bound is sharp.

Proof.

Let $P = v_1 v_2 \dots v_{diam(G)+1}$ be a diametral path in *G*. Moreover, let $f = (V_0, V_1, V_2, V_3)$ be a $\gamma_{SR}(P)$ -function. By theorem K, the weight of f is diam(G) + 1. Define $g: V(G) \rightarrow \{0,1,2,3\}$ by g(x) = f(x) for $x \in V(P)$ and g(x) = 1 for $x \in V(G)(P)$. Obviously g is a strong roman domination function for G. Hence, $\gamma_{SR}(G) \leq w(f) + (n - diam(G) - 1)$ diam(G) + 1 + n - diam(G) - 1п $\gamma_{SR}(G) \leq n.$

To prove sharpness,

Let G be obtained from a path $P = v_1 v_2 \dots v_{3k}$ $(k \ge 2)$

By adding a pendant edge $v_{3\mu}$.

Obviously, G achieves the bound

This completes the proof.

Theorem 4

For any connected graph *G* of order *n* with $\delta \geq 3$

$$\gamma_{SR}(G) \leq n - (\delta - 2)$$

Proof.

Let $P = v_1 v_2 \dots v_{diam(G)+1}$ be a diametral path in G and $f = (V_0, V_1, V_2, V_3)$ be a $\gamma_{SR}(P)$ – function for which $|V_1|$ is minimized and V_2 is a 2 – packing. Obviously, $|V_2| \operatorname{diam}(G) + 1$ Let $V_2 = \{ u_1, \ldots, u_k \}$ where $k = \operatorname{diam}(G) + 1$ Since P is a diametral path, each vertex of V_2 has at least $\delta - 2$ neighbors in V(G)(P) and $N(u_i) \cap N(u_j) = \emptyset$ if $u_i \neq u_j$. Define $g: V(G) \to \{0,1,2,3\}$ by g(x) = f(x) for $x \in V(P)$, g(x) = 0 for $x \in \bigcup_{i=1}^k N(u_i) \cap (V(G)(P))$ and g(x) = 1When $x \in V(G) \cup N(u_i)$. Obviously g is a strong roman domination function for G and $\gamma_{SR}(G) \leq w(g)$ $w(f) + n - \operatorname{diam}(G) - 1 - (\delta - 2)$ $\operatorname{diam}(G) + 1 + n - \operatorname{diam}(G) - 1 - (\delta - 2)$ $\gamma_{SR}(G) \leq n - (\delta - 2)$ This completes the superfit

This completes the proof.

Theorem 5

If $G = P_4$, then $\gamma_{SR}(G) = 5$. **Proof.**

G can be draw as follows

Figure 5.1 P_4

Define $f(v_1) = 0$, $f(v_2) = 3$, $f(v_3) = 0$, $f(v_4) = 2$. Then f is a strong roman domination function with f(v) = 5.

We have to prove that f is minimal strong roman domination function. Suppose there is a minimal strong roman domination function g such that g < f.

Case (1).

Let $g(v_1) = 0$, then $g(v_2) = 3$. If $g(v_3) = 0$, then $g(v_4)$ must be $2 \vee 3$, which implies $g \ge f$, a contradiction. If $g(v_3) = 1$, then $g(v_4) = 2$ here g > f, a contradiction. If $g(v_3) = 2$, then $g(v_4) \ne 0$, now g is not minimal, a contradiction. If $g(v_3) = 3$, then g > f, a contradiction. **Case (2).** Let $g(v_1) = 1$, then $g(v_2) = 2$. If $g(v_3) = 0$, then $g(v_4) = 3$, which implies g > f, a contradiction.

If $g(v_3) = 1 \lor 2$, then $g(v_4) \neq 0$, here $g \ge f$, a contradiction.

If $g(v_3) = 3$, then obviously g > f, a contradiction.

Case (3).

Let $g(v_1) = 2$. If $g(v_2) = 0$, then $g(v_3) = 3$, which implies g > f, a contradiction. If $g(v_2) = 1$, then for any value of g and $g(v_4), g > f$, a contradiction. If $g(v_2) = 2$, then for any value of $g(v_3)$ and $g(v_4), g \ge f$, a contradiction. If $g(v_2) = 3$, then clearly g > f, a contradiction. **Case (4).**

Let $g(v_1) = 3$.

If $g(v_2) = 0$, and $g(v_3) = 0$, then $g(v_4) = 3$, here g > f, a contradiction. If $g(v_2) = 0$ and $g(v_3) = 1$, then $g(v_4) = 2$, which implies g > f, a contradiction. If $g(v_2) = 0$ and $g(v_3) = 2$, then $g(v_4) \neq 0$, which implies g > f, a contradiction. If $g(v_2) = 0$ and $g(v_3) = 3$, then any value of $g(v_4)$, g > f, a contradiction. If $g(v_2) = 1$, then $g(v_3) = 2$, here g > f, a contradiction. If $g(v_2) = 2$, then all the value of $g(v_3)$ and $g(v_4)$, g > f, a contradiction. If $g(v_3) = 3$, clearly g > f, a contradiction.

Thus all the above cases, we get a contradiction.

Hence f is minimal strong roman domination function.

This completes the proof.

Theorem 6

For a graph *G* of order *n* with $g(G) \ge 3$ we have $\gamma_{SR}(G) \le g(G)$. **Proof.**

First note that if G is an n-cycle then $\gamma_{SR}(G) = n$.

Now, let C be a cycle of length g(G) in G.

If $g(G) = 3 \lor 4$, then we need at least 1 or 2vertices, respectively, to dominate the vertices of *C* the statement follows by theorem 7.2.

Let $g(G) \ge 5$. Then a vertex not inV(C), can be adjacent to at most one vertex of *C* for otherwise we obtain a cycle of length less than g(G) which is a contradiction. Now the result follows by theorem 7.2.

 $\gamma_{SR}(G) \ge g(G).$ This completes the proof.

References

[1] K. Selvakumar and M. Kamaraj and, Strong Roman domina-tion in graphs, (Submitted).

[2] E. J. Cockayne, P. A. Dreyer, S. M. Hedetniemi and S. T. Hedetniemi, Roman domination in graphs, Discrete Math., 278 (2004), 11{22.

[3] P. A. Dreyer, Applications and variations of domination in graphs, Ph.D. Thesis, New Brunswick, New Jersey, 2000.

[4] O. Favaron, H. Karamic, R. Khoeilar and S. M. Sheikholeslami, On the Roman domination number of a graph, Discrete Math., 309 (2009), 3447{ 3451.

[5] M. A. Henning, Defending the Roman empire from multiple attacks, Discrete Math., 271 (2003), 101{115.

[6] T. Kraner Sumenjak, P. Parlic and A. Tepeh, On the Roman domination in the lexicographic product of graphs, Discrete Appl. Math., 160 (2012), 2030 {2036.

[7] P. Parlic and J. Zerovnik, Roman domination number of the Cartesian prod-ucts of paths and cycles, Electron. J. Combin., 19(3) (2012), #P19.

[8] I. Strewart, Defend the Roman empire, Sci. Amer., 28(6) (1999), 136{139.

[9] F. Xueliang, Y. Yuausheng and J. Bao, Roman domination in regular graphs, Discrete Math., 309(6) (2009), 1528{1537.