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Abstract 
In the framework of General Relativity and assuming the Copernican principle, accounted for by the 
Friedman-Lemaitre-Robertson-Walker metric, a spatially flat universe is consistent with the 
cosmographic conversely, this condition, which is fulfilled by astrophysical measurements, 
necessarily requires spatial flatness. Here, we will construct some cosmological models assuming the 
validity of General Relativity, of Copernican principle (homogeneity and isotropy at large scale) and 
on dark energy pictured either by some non-ideal fluids or by canonical scalar fields interacting with 
dark matter. A theorist cannot appeal to this theory in order to justify their views. 
Keywords: General Theory, Relativity's, Uniform and Isotropic, Cosmos 
1. Introduction 
The field of cosmology is concerned with the study of the structure, history, and potential future 
evolution of the universe on a galactic scale, spanning billions of light-years. To investigate the physics 
of the cosmos, cosmologists develop theoretical models within the context of general relativity. They 
focus on the big picture by contrasting the seen cosmos with the models. Before the advent of general 
relativity, cosmologists looked on Newton's theory of gravitation to explain the cosmos. A variety of 
issues arose while attempting to deal with the dynamics of the cosmos using Newtonian cosmological 
models. The hypothesis relies on the idea that a gravitational disturbance can spread instantly, which 
is a controversial idea, especially when extrapolated across huge distances. This stymied the 
development of Newtonian theory. The general theory of relativity proposed by Einstein ultimately 
superseded Newtonian theory. Einstein's general theory of relativity was a major influence on modern 
cosmology. For the first time, this theory offers a physical and mathematical framework of general 
relativity to address issues of galactic proportions.[1] 
2. Homogeneous and isotropic cosmological models 
Einstein's general theory of relativity, which provides new ways to think about and solve issues on a 
cosmic scale, is often credited as the inspiration for modern cosmology. The static cosmological 
models used were his own creations, and they were all filled with a perfect fluid with a uniform 
distribution. However, the model has a number of drawbacks that make it undesirable. This runs 
counter to observations made by Hubble and L.Humason who found that the redshift of nebulae light 
increased at least very closely in a linear fashion with increasing distance. the Einstein static universe 
with a pressure term and gave the field equations for this situation shortly after the publication of 
Einstein's static model. Nothing at all, not even radiation, exists in the de-sitter cosmos. In the de-sitter 
universe, we learn how Hubble and Humason's measured redshift is really working. The observed 
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contraction of nebulae is consistent with the de-sitter cosmos being entirely empty. The Einstein 
universe, on the other hand, is dense with stuff, but it fails to account for the observed receding of 
nebulae. Therefore, neither Einstein's nor de-sitter's universes are accurate representations of the real 
one. Non-static models where the metric tensor is inherently time-dependent are required to develop a 
model that combines the benefits of Einstein's and desitter's static models.[2] 
2.1 Standard Model and Cosmological Constant 
Friedmann used the Cosmological Principle to solve Einstein's field equations, and the resulting non-
static cosmological solutions are consistent with an expanding universe. Therefore, the Friedmann-
Robertson-Walker (FRW) metric is the best line element for representing a non-static and homogenous 
model of the cosmos.[3] In standard spherical coordinates(xi) = (t, r, θ, ϕ), a spatially homogeneous 
and isotropic FRW line element has the form (in units c = 1) 

dsଶ = dtଶ − aଶ(t) ቂ
ୢ୰మ

ଵି୩୰మ
+ rଶ(dθଶ + sinଶθd∅ଶ)ቃ     (2.1) 

Where, a(t)is the cosmic scale factor that describes the expansion or contraction of the universe in 
terms of distances (scales), and is related to the red shift of the 3-space; k is the curvature parameter 
that describes the geometry of the spatial section of space-time, with closed, flat, and open universes 
corresponding to k = -1, 0, and 1, respectively. Amazingly, the FRW models have been able to 
satisfactorily describe the observed characteristics of the cosmos.[4] 
The Einstein’s field equations (2.1), for the metric (2.2), in case of the energy momentum tensor, 
reduce to the following equations: 

ୟ̇మ

ୟమ
=

଼஠

ଷ
ρ −

୩

ୟమ    (2.2) 

ୟ̈

ୟ
= −

ସ஠ୋ

ଷ
(ρ + 3p)     (2.3) 

Where, an over dot denotes derivative with respect to the cosmic time t. 

For the FRW space-time (2.1) and the perfect fluid energy-momentum tensor, yields a single 
conservation equation 

ρ̇ + 3(ρ + p)
ୟ̇

ୟ
= 0    (2.4) 

In reality, this equation cannot exist without the Friedmann equations. This means that variations in 
the energy density at a given location are possible in the cosmos (as defined by the Hubble parameter 

H =
ୟ̇

ୟ
 ). Due to the free flow of energy between matter and the space-time geometry, it is important 

to keep in mind that the concept of “total energy" does not hold.[5] 

The Friedmann-Robertson-Walker models are fundamental in the study of the cosmos. These 
models may not be perfect representations of the cosmos, but they do provide useful global 
approximations of the universe as it is now. All directions from a given place in space are considered 
to be equal (isotropy) and (i) the cosmos is the same everywhere (spatial homogeneity). 
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Anisotropic cosmological models have received renewed theoretical interest in recent years thanks 
to experiments measuring cosmic microwave radiation and speculations about the quantity of 
helium generated in the early phases of the universe. Bianchi models, which are both Spatially 
Homogenous and anisotropic, play a significant role in contemporary cosmology because they 
bridge the gap between FRW models and a wholly inhomogeneous and anisotropic cosmos. Since 
three-dimensional groups function simply transitively on space in the same way that three-
dimensional orbits do, they are required in every spatially homogeneous Bianchi model. It's helpful 
to assume that the cosmos is homogeneous and isotropic, meaning that all directions in space are 
equal and no region is fundamentally different from any other. There is some circumstantial evidence 
that the distribution of these materials on vast scales exhibit isotropy, and this includes the 
distribution of galaxies in the sky along their apparent magnitudes and red shifts, the distribution of 
radio sources, the cosmic X-ray background, and the cosmic microwave background.[6] 

2.2 Spatially Homogeneous and Anisotropic Models 
There are no observational facts that ensure in an era previous to the recombination that the cosmos 
was isotropic and homogenous at the time. It's not known what kinds of matter fields existed in the 
early universe. Assumptions of spherical symmetry and isotropy are not strictly valid near the Big-
Bang singularity, therefore a smoothed-out depiction of the early cosmos are impossible. In order to 
understand the origins of modern-day local anisotropies in galaxies, clusters, and super clusters, 
studying anisotropy at early times is a natural next step. Several 
 probable causes have been proposed for these anisotropies. These include cosmic magnetic or electric 
fields, long-wavelength gravitational waves, Yang-Mills fields, and others. In addition, theoretical 
interest in the cosmological models with anisotropic background has been sparked by experimental 
studies of the isotropy of the CMBR and speculation about the amount of helium generated in the early 
stages of the evolution of the universe. Therefore, it seems reasonable to assume a geometry that is 
more generic than merely the isotropy and homogeneous FRW geometry in order to characterise the 
early evolution of the cosmos. Understanding the early behaviour of the universe is crucial, and 
anisotropic cosmological models play a crucial part in this. Understanding the evolution of the universe 
and the factors that will shape its future are primary goals of modern cosmology.[7] 
3. The Friedmann model 
The cosmological principle, the absence of long-range antigravity, and the assumption that no 
additional matter or energy is created after the Big-Bang leave just three alternatives open, according 
to the general theory of relativity. In recognition of Alexander Friedmann, who first derived them 
analytically in the 1920s  these are commonly referred to as Friedmann worlds. The pace of expansion 
slows with time in every universe, but each universe has a different eventual fate that depends on the 
average density of its matter in comparison to a critical density.[8] 
If we define the average matter density, divided by the critical density to be ΩM (the subscript M stands 
for matter), 

ΩM = Avergae density of
matter

Crirical Density
 



315 
 
 

 
 
 

Then, the three possible universes correspond to the cases are given blow 

ΩM > 1. 

ΩM = 1. 

ΩM < 1. 

If ΩM > 1, it means, there is an excess of average density over the critical density. In this universe, 
the recession speed grows negative as time progresses, and galaxies finally reverse course and begin 
to approach one another. The Big Crunch is the ultimate fate of this cosmos.[9] 

If ΩM = 1, It means, the critical density is coincident with the mean density. In this universe, the 
pace at which galaxies recede from one another decreases with time, eventually approaching zero as 
time approaches infinity. So, the universe will keep growing forever. Most inflationary cosmologies 
predict this kind of universe. 

If ΩM < 1, It means, In general, there isn't enough matter to reach the critical density. With more and 
more time passing, the recession speed (for a particular pair of galaxies) in this universe approaches 
a constant, nonzero value. So, it's no sweat for the Universe to keep growing indefinitely.[10] 

 

Figure 3.1: Big-Bang models of the Universe are shown; the vertical axis represents the 
separation between any two galaxies (preferably in different super clusters), and the horizontal 

axis is time 

Each of these three universe types has its own unique geometry. Flat universes, or (critical universes), 
are the term used to describe the condition where M = 1. The geometry developed by the Greek 
mathematician Euclid in the third century b.c., known as "Euclidean geometry," is used to describe 
this. The "fifth postulate" of Euclid states that if you have a line and a point that is not on the line, 
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then you can only draw one parallel line across the point (Fig.(1.5)-A). A cosmos like this has no 
depth, no width, and no height, yet it hardly stretches eternally. It’s age is 

exactly two-thirds of the Hubble time, i.e. 
ଶ

ଷ
/H0 = (2/3) T0. 

For ΩM > 1 universe, the fifth postulate of Euclid is invalid. No two parallel lines can be drawn via 
a location that is not on a line (Fig. (3.2)-B). The space-time of such a universe is positively curved. 
The size of the universe is bounded but not infinite. A hot "big crunch" is where it's at now. Another 
term for a closed universe is a "positively curved" one. Age estimates put it as less than 0.6 c.[11] 

For ΩM < 1 universe, the fifth postulate of Euclid is invalid. Given a line and a point off of it, it is 
possible to create an endless number of parallel lines through the off-line point (Fig.(3.2)- C). A 
universe with negative spatial curvature is readily unlimited in size since its volume is open and 
infinite. An open universe, hyperbolic universe, or negatively curved universe are all names for the 

same thing. Its age is between (2/3) T0 and T0 (if ΩM = 0, the age is T0). ΩM = 1 that is flat universe, 
represents the dividing line between open universe and closed universe., which corresponds to a flat 
universe.[12] 

 

Figure 3.2: Three kinds of universes 

4 The physical and geometrical properties 

The average Hubble parameter and the direction-specific Hubble parameters are: 
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Figure 4.1: Hubble’s parameter (H) versus cosmic time (t). 

Here k5 = 1 , α = 0.2 and k3 = 1 

  

𝐻ଵ = 𝐻ଶ =
௞ఱ௞య

(ఈାଵ)(௞ఱ௧ା௞ల)
                       ( 4.1) 

       

𝐻ଷ =
௞ఱ

(ఈାଵ)(௞ఱ௧ା௞ల)
                                    (4.2) 

     

𝐻ସ =
௞ఱ(௞యାଵ)

(ఈାଵ)(௞ఱ௧ା௞ల)
                                 ( 4.3) 

    

𝐻 =
௞ఱ(ଷ௞యାଶ)

ସ(ఈାଵ)(௞ఱ௧ା௞ల)
                                   (4.4) 

  

𝜃 = 4𝐻 =
௞ఱ(ଷ௞యାଶ)

(ఈାଵ)(௞ఱ௧ା௞ల)
                              ( 4.5) 

With this model, the shear scalar is 

  

𝜎ଶ =
௞ఱ

మቀ
య

ర
௞య

మି௞యାଵቁ

ଶ((ఈାଵ)൫௞ఱ௧ା௞ల)൯
మ                                     ( 4.6) 

Model anisotropic sensitivity  
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𝐴̅ =
ଷ௞య

మିସ௞యାଵ଺

(ଷ௞య௧ାଶ)మ
                                               ( 4.7) 

 

The energy density of the model is 

8𝜋𝜖 = 𝑘ହ
ଶ൫3𝑘ଷ

ଶ + 5𝑘ଷ + 1൯൫(𝛼 + 1)(𝑘ହ𝑡 + 𝑘଺)൯
ିଶ

+ 𝛬                     ( 4.8) 

Model pressure has increased  

       

8𝜋𝑝 = 𝑘ହ
ଶ[(𝑎 + 1)(𝑘ହ𝑡 + 𝑘଺)]ିଶ ቂ−3𝑘ଷ

ଶ + 2𝛼(𝑘ଷ + 1) − 3𝐾ଷ − 1 −
ଷଶ

ଷ
𝜋𝑙(3𝑘ଷ + 2)ቃ +

8𝜋𝑘ହ𝜁(3𝑘ଷ + 2)[(𝛼 + 1)(𝑘ହ𝑡 + 𝑘଺)]ିଵ − 𝛬                                             ( 4.9) 

Ellis specifies the following energy parameters (𝑖)(𝜖 + 𝑝) > 0 𝑎𝑛𝑑 (𝑖𝑖)(𝜖 + 3𝑝) > 0 [13] 

The result of (i)'s energy state is 

𝑘ହ
ଶ[(𝑎 + 1)(𝑘ହ𝑡 + 𝑘଺)]ିଶ ቂ2𝑘ଷ + 2𝛼(𝑘ଷ + 1) −

ଷଶ

ଷ
𝜋𝑙(3𝑘ଷ + 2)ቃ + 8𝜋𝑘ହ𝜁(3𝑘ଷ +

2)[(𝛼 + 1)(𝑘ହ𝑡 + 𝑘଺)]ିଵ > 0                                                                                             (4.10) 

as a result of (ii)'s energy constraints 

𝑘ହ
ଶ[(𝑎 + 1)(𝑘ହ𝑡 + 𝑘଺)]ିଶൣ−6𝑘ଷ

ଶ − 4𝑘ଷ
ଶ + 6𝛼(𝑘ଷ + 1) − 32𝜋𝑙(3𝑘ଷ + 2)൧ + 24𝜋𝑘ହ𝜁(3𝑘ଷ +

2)[(𝛼 + 1)(𝑘ହ𝑡 + 𝑘଺)]ିଵ − 2𝛬 > 0                                               ( 4.11) 

We get the following (4.11) from the previous equation: 

𝑘ହ
ଶ[(𝑎 + 1)(𝑘ହ𝑡 + 𝑘଺)]ିଶൣ−6𝑘ଷ

ଶ − 4𝑘ଷ
ଶ + 6𝛼(𝑘ଷ + 1) − 32𝜋𝑙(3𝑘ଷ + 2)൧ + 24𝜋𝑘ହ𝜁(3𝑘ଷ +

2)[(𝛼 + 1)(𝑘ହ𝑡 + 𝑘଺)]ିଵ > 2𝛬                                                       (4.12) 

4.1 The special model  

The model is simplified when the appropriate coordinates and constants are used (specifically, when 
k5 = 1 and k6 = 0): 

𝑑𝑠ଶ = −𝑑𝑡ଶ + 𝑚ଶ𝐾ସ
ଶ[(𝛼 + 1)(𝑡)]ቀ

మೖయ
ഀశభ

ቁ
𝑑𝑥ଶ + 𝐾ସ

ଶ[(𝛼 + 1)(𝑡)]ቀ
మೖయ
ഀశభ

ቁ
𝑑𝑦ଶ + [(𝛼 + 1)(𝑡)]ቀ

మ

ഀశభ
ቁ
𝑑𝑧ଶ +

𝐾ସ
ଶ[(𝛼 + 1)(𝑡)]ቀ

మ(ೖయశభ)

ഀశభ
ቁdu2                                                                 (4.13) 

The values of the Hubble expansion parameter () and the shear () are determined by: 

𝐻 =
(ଷ௞యାଶ)

ସ(ఈାଵ)(௧)
                               (4.14) 

𝜃 = 4𝐻 =
(ଷ௞యାଶ)

(ఈାଵ)(௧)
                      ( 4.15) 

𝜎ଶ =
ቀ

య

ర
௞య

మି௞యାଵቁ

ଶ൫(ఈାଵ)௧൯
మ                    (4.16) 

The formula for the anisotropic parameter is: 



319 
 
 

 
 
 

𝐴̅ =
ଷ௞య

మିସ௞యାଵ଺

(ଷ௞య௧ାଶ)మ
             (4.17) 

Density and pressure expressions for the model are as follows (4.13) [14] 

8𝜋𝜖 = ൫3𝑘ଷ
ଶ + 5𝑘ଷ + 1൯൫(𝛼 + 1)𝑡൯

ିଶ
+ 𝛬               (4.18) 

And 

8𝜋𝑝 = [(𝛼 + 1)(𝑡)]ିଶ ቂ−3𝑘ଷ
ଶ + 2𝛼(𝑘ଷ + 1) − 3𝐾ଷ − 1 −

ଷଶ

ଷ
𝜋𝑙(3𝑘ଷ + 2)ቃ + 8𝜋𝜁(3𝑘ଷ +

2)[(𝛼 + 1)(𝑡)]ିଵ − 𝛬                                                   (4.19)  

The current energy situation is       (𝑖)(𝜖 + 𝑝) > 0 𝑎𝑛𝑑 (𝑖𝑖)(𝜖 + 3𝑝) > 0 

The result of (i)'s energy state is 

[(𝛼 + 1)(𝑡)]ିଶ ቂ2𝑘ଷ + 2𝛼(𝑘ଷ + 1) −
ଷଶ

ଷ
𝜋𝑙(3𝑘ଷ + 2)ቃ + 8𝜋𝜁(3𝑘ଷ + 2)[(𝛼 + 1)(𝑡)]ିଵ > 0 (4.20)    

                                                  

as a result of (ii)'s energy constraints 

[(𝛼 + 1)(𝑡)]ିଶൣ−6𝑘ଷ
ଶ − 4𝑘ଷ

ଶ + 6𝛼(𝑘ଷ + 1) − 32𝜋𝑙(3𝑘ଷ + 2)൧ + 24𝜋𝜁(3𝑘ଷ + 2)[(𝛼 +

1)(𝑡)]ିଵ > 2𝛬                                                                         ( 4.21) 
5. Cosmological Constant 
Because of its unusual features, the cosmological constant has a long history of support and opposition. 
Since then, gravitational theory has been given a jolt by the cosmological constant. After Hubble's data 
confirmed the expanding universe picture, Einstein conceded that the -term in his gravitational field 
equations was superfluous. He went so far as to call the adoption of the Λ-term his "biggest blunder." 
However, prominent cosmologists of the, like as Lemaitre and Eddington, felt that models based on 
the -term introduced has certain compelling aspects into cosmology and that these should also be 
studied at length. A new understanding developed when interpreted the -term as a Lorentz-invariant 
vacuum 'fluid' in Einstein's equation. In a very novel move, Zel'dovich resurrected the question of the 
cosmological constant by linking it to the vacuum energy density resulting from quantum fluctuations. 
So, with a fresh perspective, people began considering again. The cosmological constant was gaining 
theoretical traction in this way, allowing it to endure over time. There was no astronomical evidence 
for before 1998, and the observational upper bound was so large (10121 Planck units) that many 
particle physicists assumed it must have a value of zero by some basic principle.[15] 
5. Conclusion 
The concept you're referring to is likely the "cosmological principle," which is a fundamental 
assumption in cosmology that states the universe is homogeneous (uniform) and isotropic (looks the 
same in all directions) on large scales. the cosmological principle have led to the understanding that 
the universe on large scales is homogeneous and isotropic. This understanding forms the foundation 
of modern cosmology and has provided insights into the universe's history, structure, and evolution. 
6. References 



320 
 
 

 
 
 

1. Bretón, N., Cervantes-Cota, J. L., & Salgado, M. (Eds.). (2016). The early universe and 
observational cosmology (Vol. 646). Springer Science & Business Media. 

2. Ishak, M. (2019). Testing general relativity in cosmology. Living Reviews in Relativity, 22, 1-
204. 

3. Luminet, J. P. (2016). Editorial note to: Georges Lemaître, A homogeneous universe of 
constant mass and increasing radius accounting for the radial velocity of extra-galactic 
nebulae. General Relativity and Gravitation, 45, 1619-1633. 

4. Manoukian, E. B., & Manoukian, E. B. (2020). Our Homogeneous and Isotropic Universe on 
Very Large Scales. 100 Years of Fundamental Theoretical Physics in the Palm of Your Hand: 
Integrated Technical Treatment, 451-454. 

5. Walker, A. G. (2017). On Milne's theory of world‐structure. Proceedings of the London 
Mathematical Society, 2(1), 90-127. 

6. Synge, J. L. (2015). Relativity: the special theory. 

7. Pasachoff, J. M., & Filippenko, A. (2019). The cosmos: Astronomy in the new millennium. 
Cambridge University Press. 

8. Hubble, E., & Humason, M. L. (2019). The velocity-distance relation among extra-galactic 
nebulae. Astrophysical Journal, vol. 74, p. 43, 74, 43. 

9. Sandage, A. (2018). The Hubble atlas of galaxies (Vol. 618, No. 2). Washington, DC: Carnegie 
Institution of Washington. 

10. Senatore, L., Smith, K. M., & Zaldarriaga, M. (2010). Non-Gaussianities in single field 
inflation and their optimal limits from the WMAP 5-year data. Journal of Cosmology and 
Astroparticle Physics, 2010(01), 028. 

11. Freedman, W. L., & Madore, B. F. (2018). The hubble constant. Annual Review of Astronomy 
and Astrophysics, 48, 673-710. 

12. Riess, A. G., Macri, L., Casertano, S., Sosey, M., Lampeitl, H., Ferguson, H. C., ... & Sarkar, 
D. (2019). A redetermination of the Hubble constant with the Hubble Space Telescope from a 
differential distance ladder. The Astrophysical Journal, 699(1), 539. 

13. Beutler, F., Blake, C., Colless, M., Jones, D. H., Staveley-Smith, L., Campbell, L., ... & 
Watson, F. (2017). The 6dF Galaxy Survey: baryon acoustic oscillations and the local Hubble 
constant. Monthly Notices of the Royal Astronomical Society, 416(4), 3017-3032. 

14. Freedman, W. L., Madore, B. F., Gibson, B. K., Ferrarese, L., Kelson, D. D., Sakai, S., ... & 
Stetson, P. B. (2016). Final results from the Hubble Space Telescope key project to measure 



321 
 
 

 
 
 

the Hubble constant. The Astrophysical Journal, 553(1), 47. 

15. Garnavich, P. M., Kirshner, R. P., Challis, P., Tonry, J., Gilliland, R. L., Smith, R. C., ... & 
Wells, L. (2018). Constraints on cosmological models from Hubble Space Telescope 
observations of high-z supernovae. The Astrophysical Journal, 493(2), L53. 

 
 
 
 
 
 
 
 
 
 


