Open Access Article

GEOMETRIC WAY OF SOLVING PROBLEMS RELATED TO COMPUTATION WITH INVERSE TRIGONOMETRIC FUNCTIONS

G．Axmedova
Kokand State Pedagogical Institute

Annotation．This article provides information on the use of geometric methods in solving equations， when performing computations related to some inverse trigonometric functions．

Keywords：geometric method，inverse trigonometric functions，right－angled triangle，angle，function area of definition，function area of values，sines，and Pythagorean theorems．

The geometric solution of algebraic problems is of great importance in increasing the interest of students in mathematics，in the cultivation of Mathematical Thinking，in the manifestation of the inextricable relationship between algebra and geometry．One of the necessary requirements is to learn it，to have knowledge about it，to be able to tassavur，to understand and apply it in essence，to study its features and to develop its methodology．

We will dwell in this article on geometric methods for adding，subtracting，solving equations related to Inverse trigonometric functions．

Example 1． $\operatorname{arctg} 1+\operatorname{arctg} 2+\operatorname{arctg} 3$ calculate．
Solution．According to drawing $1 \operatorname{arctg} 3=\angle B A M, \operatorname{arctg} 2=\angle C A N, \operatorname{arctg} 1=\angle B A C .(B A C$ acute angle of a right－angled equilateral triangle）．

So， $\operatorname{arctg} 1+\operatorname{arctg} 2+\operatorname{arctg} 3=\pi$ ．

Answer：π

Example 2. $\operatorname{arctg} \frac{2}{3}+\operatorname{arctg} 5$ calculate.

Solution. According to drawing 2 this gathering $\frac{\pi}{4}$ is equivalent to because

$$
\operatorname{arctg} \frac{2}{3}=\angle C A D, \operatorname{arctg} 5=\angle B A D
$$

$\angle B A C$ right-angled equilateral $A B C$ acute angle of the Triangle.

Draw 2

Answer: $\frac{\pi}{4}$.
Example 3. $\cos (\operatorname{arctg} 3+\operatorname{arctg} 0,5)$ calculate.
Solution. In drawing $3 A B C$ the Triangle is made of. In this $\operatorname{ctg} \angle D A B=3$ and $\operatorname{tg} \angle D A C=0,5 . A C B$ is a right-angled equilateral triangle. So,

$$
\operatorname{arcctg} 3+\operatorname{arcctg} 0,5=\frac{\pi}{4} \cdot \cos (\operatorname{arcctg} 3+\operatorname{arcctg} 0,5)=\frac{\sqrt{2}}{2}
$$

Answer: $\frac{\sqrt{2}}{2}$.

Example 4. $\operatorname{tg}\left(\arcsin \frac{2}{\sqrt{5}}+\arccos \frac{1}{\sqrt{10}}\right)$ calculate.
Solution. $\frac{2}{\sqrt{5}}>0$ since $\arcsin \frac{2}{\sqrt{5}}$ the angle of the right triangle, whose catheters are relatively 1:2. Then this is the magnitude of the angle $\operatorname{arctg} 2$ can be viewed as. Similarly, by analyzing $\arccos \frac{1}{\sqrt{10}}=\operatorname{arctg} 3$ we form the. According to drawing $3 \angle M A B=\operatorname{arctg} 3$ and $\angle N A C=\operatorname{arctg} 2$.
Their sum is $\pi-\frac{\pi}{4}$ is equivalent to. So, $\operatorname{tg}\left(\operatorname{arctg} \frac{2}{\sqrt{5}}+\arccos \frac{1}{\sqrt{10}}\right)=\operatorname{tg}\left(\pi-\frac{\pi}{4}\right)=-1$.
Answer: - 1.
Now let's consider the solution of the following general issue.
Example 5. $f(x)=\operatorname{arctg} 1+\operatorname{arctg}\left(1+\frac{1}{x}\right)+\operatorname{arctg}(1+2 x)$ find the value domain of the function.

Solution. The domain of definition of this function is all real numbers other than zero

$$
D(f)=(-\infty ; 0) \cup(0 ; \infty)
$$

$f(x)$ value domain of the function $E(f)$ let's consider 5 cases of finding.

1) $\left\{\begin{array}{l}1+\frac{1}{x}<0 \\ 1+2 x<0\end{array}\right.$

In this case $-1<x<-\frac{1}{2}$ and $A(x)<0$, in this
$A(x)=\operatorname{arctg}\left(1+\frac{1}{x}\right)+\operatorname{arctg}(1+2 x), \operatorname{tg} A(x)=\frac{1+\frac{1}{x}+1+2 x}{1-\left(1+\frac{1}{x}\right)(1+2 x)}=\frac{2+2 x+\frac{1}{x}}{-2-2 x-\frac{1}{x}}=-1$.
$2+2 x+\frac{1}{x}<0$ since $\left(-1 ;-\frac{1}{2}\right)$ all in the range x for

$$
A(x)=-\frac{\pi}{4} ; \quad f(x)=\operatorname{arctg} 1+A(x)=\frac{\pi}{4}-\frac{\pi}{4}=0
$$

2) $\left\{\begin{array}{l}1+\frac{1}{x}<0 \\ 1+2 x>0\end{array}\right.$

In this case $-\frac{1}{2}<x<0$ and $B(x)>0$ in this $B(x)=\operatorname{arctg} 1+\operatorname{arctg}(1+2 x)$.

$$
\operatorname{tg} B(x)=\frac{1+1+2 x}{1-1+(1+2 x)}=\frac{2+2 x}{-2 x}=-\left(1+\frac{1}{x}\right), B(x)=-\operatorname{arctg}\left(1+\frac{1}{x}\right) .
$$

So, $f(x)=\operatorname{arctg}\left(1+\frac{1}{x}\right)+B(x)=\operatorname{arctg}\left(1+\frac{1}{x}\right)-\operatorname{arctg}\left(1+\frac{1}{x}\right)=0$
3) $\left\{\begin{array}{l}1+\frac{1}{x}>0 \\ 1+2 x<0\end{array}\right.$

In this case $x<-1$ and $C(x)>0$, in this $C(x)=\operatorname{arctg} 1+\operatorname{arctg}\left(1+\frac{1}{x}\right)$

$$
\operatorname{tg} C(x)=\frac{1+1+\frac{1}{x}}{1-1 \cdot\left(1+\frac{1}{x}\right)}=\frac{2+\frac{1}{x}}{-\frac{1}{x}}=-(1+2 x), \operatorname{tg} C(x)=-\operatorname{arctg}(1+2 x) .
$$

So, $f(x)=C(x)+\operatorname{arctg}(1+2 x)=-\operatorname{arctg}(1+2 x)+\operatorname{arctg}(1+2 x)=0$
4) $f(-1)=\operatorname{arctg} 1+\operatorname{arctg}\left(1+\frac{1}{-1}\right)+\operatorname{arctg}(1+2(-1))=0$.

$$
f\left(-\frac{1}{2}\right)=\operatorname{arctg} 1+\operatorname{arctg}\left(1+\frac{1}{-\frac{1}{2}}\right)+\operatorname{arctg}\left(1+2 \cdot\left(-\frac{1}{2}\right)\right)=0
$$

So, $x<0$ in $f(x)=0$.
5) $\left\{\begin{array}{l}1+\frac{1}{x}>0 \\ 1+2 x>0\end{array}\right.$

$$
\begin{gathered}
D(x)=\operatorname{arctg}\left(1+\frac{1}{x}\right)+\operatorname{arctg}(1+2 x) \\
\operatorname{tg} D(x)=\frac{1+\frac{1}{x}+1+2 x}{1-\left(1+\frac{1}{x}\right)(1+2 x)}=\frac{2+2 x+\frac{1}{x}}{-2-2 x-\frac{1}{x}}=-1 .
\end{gathered}
$$

$(0 ;+\infty)$ in the range x for all values of

$$
2+2 x+\frac{1}{x}>0, D(x)=\frac{3 \pi}{4} ; \quad f(x)=\operatorname{arctg} 1+D(x)=\frac{\pi}{4}+\frac{3 \pi}{4}=\pi .
$$

So, $x>0$ da $f(x)=\pi$.
Now it is not difficult to find the area of values of a given function.

$$
E(f)=\{0 ; \pi\}
$$

Example 6. $\operatorname{ctg}\left(\frac{1}{2} \arccos \frac{5}{13}\right)$ calculate.
Solution. An example is instantaneous if we apply the concept of cosine and catangency of the acute angle of a right triangle, Pythagorean theorem, and the property of the bisector.

In drawing $4 \angle A C B=90^{\circ}$ is $A B C$ the Triangle is depicted. $B C=5, A B=13$ and $B M A B C$ angle bisector.

Draw 4
Then $M C=5 x, A M=13 x, A C=12, x=\frac{2}{3}$.

$$
\operatorname{ctg}\left(\frac{1}{2} \arccos \frac{5}{13}\right)=\frac{B C}{M C}=\frac{5}{5 x}=\frac{1}{x}=\frac{3}{2} .
$$

Answer: $\frac{3}{2}$.
Example 7. $\sin \left(2 \arccos \frac{40}{41}\right)$ calculate.
Solution. In drawing $5 A B C$ an equilateral triangle is described. $\quad(A B=B C=41)$ $B M \perp A C, C N \perp A B$.

Draw 5
By Pythagorean theorem $A M=9$. Then

$$
\sin \left(2 \arccos \frac{40}{41}\right)=\frac{C N}{B C}, B C=41, C N=\frac{A C \cdot B M}{A B}, C N=\frac{2 \cdot 9 \cdot 40}{41}=\frac{720}{41} .
$$

So, $\sin \left(2 \arccos \frac{40}{41}\right)=-\frac{720}{1681}$.
Answer: $\frac{720}{1681}$.
Example 8. $\cos (2 \operatorname{arctg} 2)$ calculate.
Solution. Triangle according to drawing $6 B A C$ in $\angle B A C=2 \operatorname{arctg} 2$

Draw 6
Because this angle does not pass $\operatorname{arctg} 2>\operatorname{arctg} 1$
So, $\cos (2 \operatorname{arctg} 2)=-\cos \angle B A M$.

$$
\cos \angle B A M=\frac{A M}{A B} .
$$

By Pythagorean theorem, $\triangle B A M$ for $A M=\sqrt{A B^{2}-B M^{2}} . \triangle A B D$ for $A B=\sqrt{5}$
$B M$ in $A B C$ as the height of the triangle we find.

$$
B M=\frac{2 S_{\triangle A B C}}{A C}
$$

So, $B M=\frac{4}{\sqrt{5}} . A M$ calculating, $\cos (2 \operatorname{arctg} 2)=-\frac{3}{5}$ we find.

$$
\text { Answer: } \cos (2 \operatorname{arctg} 2)=-\frac{3}{5}
$$

Example 9. This $\arcsin \lg x^{2}+\arcsin \lg x=\frac{\pi}{3}$ solve the equation.
Solution. Hypotenuse $A B=1$ is $A B M$ and $A B N$ we look at the triangles.(Draw $7 M B=|2 \lg x|$ va $N B=|\lg x|$ let. Then $\angle M A N$ according to the condition $\frac{\pi}{3}$ will have a size. A, M, B, N diameter $A B$ lies in the circle that is. Then $M N$ by the vatar length sine theorem $A B \sin \frac{\pi}{3}$ is equivalent to. $M N=\frac{\sqrt{3}}{2}$.

Draw 7
On the other hand $M B N$ according to the cosines theorem in a triangle.

$$
\begin{gathered}
M N^{2}=M B^{2}+B N^{2}-2 \cdot M B \cdot B N \cos \angle M B N \\
\cos \angle M B N=\cos \frac{2 \pi}{3}=-\frac{1}{2}
\end{gathered}
$$

then

$$
\left(\frac{\sqrt{3}}{2}\right)^{2}=(2 \lg x)^{2}+(\lg x)^{2}-2 \cdot 2 \lg x \cdot \lg x \cdot\left(-\frac{1}{2}\right)
$$

and

$$
7 \lg ^{2} x=\frac{3}{4},|\lg x|=\frac{\sqrt{221}}{14}
$$

from this

$$
x_{1}=0,1^{\frac{\sqrt{21}}{14}} ; \quad x_{2}=10^{\frac{\sqrt{21}}{14}} .
$$

Both values $|\lg x| \leq \frac{1}{2}$ satisfies the condition. But x_{1} as a result of verification, the equation will not have a root.

Answer: $10^{\frac{\sqrt{21}}{14}}$.
Example 10. $\arcsin \frac{1}{x}+\arccos \frac{2}{x}=\frac{\pi}{6}$ calculate.
Solution. As you know, $|x| \geq 2$. Hypotenuse $A B=1$ is $A B M$ and $A B N$ we look at the right triangles. (Draw 8).

Draw 8
$B M=\frac{1}{|x|}$ and $A N=\frac{2}{|x|}$ let. Then $\angle M A N=\frac{\pi}{6} . A, M, B, N$ the dots have a diameter of. $A B$ lies in the circle that is. Then $M N$ by the vatar length sine theorem $A B \sin \frac{\pi}{6}$ is equivalent to. $M N=\frac{1}{2}$.

$$
\begin{gathered}
M N^{2}=A M^{2}+A N^{2}-2 \cdot A M \cdot A N \cos \angle M A N \\
\frac{1}{4}=1-\frac{1}{x^{2}}+\frac{4}{x^{2}}-2 \sqrt{1-\frac{1}{x^{2}}} \cdot \frac{2}{|x|} \cdot \frac{\sqrt{3}}{2}, \quad \frac{3}{x^{2}}+\frac{3}{4}=2 \sqrt{3} \sqrt{\frac{1}{x^{2}}-\frac{1}{x^{4}}}
\end{gathered}
$$

To make it easier for you to solve $\frac{1}{x^{2}}$ in t substituting, $112 t^{2}-40 t+3=0$ we form the. In this $t_{1}=\frac{3}{28} ; t_{2}=\frac{1}{4}$. Back to marking $x=2$ we determine that the given equation is the root.

References

1.Г.З.Генкин "Геометрические решения негеометрических задач" Москва. "Просвешение". 2007.
2.П.Ф.Севрюков, А.Н. Смоляков "Тригонометрические, показательные и логарифмические уравнения и неравенства" Москва. Ставрополь. 2008
3.И.Ф.Шарыгин "Факультативный курс по математике" 10 класс. Москва. «Просвещение», 1989 г.

