第 50 卷第 01 期 2023 年 1 月

Open Access Article EVALUATION OF TIMING OF NITROGEN APPLICATION IN MAIZE (ZEA MAYS L.) GROWN ON COARSE LOAMY TYPIC HAPLUSTEPTS SOIL OF PUNJAB

Himanshu Sekhar Behera, Dr. (Prof) Raj Kumar

Ph.D., Scholar, Department of Soil Science and Agricultural Chemistry, School of Agriculture, Lovely Professional University, Punjab, India.

Ex-HOD, Professor, Department of Soil Science and Agricultural Chemistry, School of Agriculture, Lovely Professional University, Punjab, India.

ABSTRACT

The study was a field experiment conducted in the Experimental Farm of the School of Agriculture on the campus of Lovely Professional University in Punjab, at latitudes of 31°24' N and 75°69' E. Analyzing the effects of adding nitrogen to both organic and inorganic fertilizer solutions on maize growth, yield, nutrient absorption, and economics in India during the kharif season of 2022. At the experimental site, the soil texture is coarse loamy Typic Haplustept soil. The trial had sixteen treatments, a randomized block design, and was triple repeated. Following the recommended fertilizer schedule of 50:24:12 N, P₂O₅, and K₂O kg ha⁻¹. To supply the nutrients N, P, and K, respectively, fertilizers containing urea (46% N), single super phosphate (16% P₂O₅), and muriate of potash (60% K₂O) were used. The hybrid PAU variety of maize known as PMH-13, which was utilized in the tests, was the subject of this study and analysis. Both potassium and phosphorus are supplied completely by basal application. Nitrogen was administered at the appropriate amount in a basic manner. Net plot area was used to compute crop yields. Crop observations were conducted at the 20 DAS, 40 DAS, 60 DAS, 80 DAS, and harvest stages. For the purpose of recording biometric observations, samples from each plot were randomly selected. After spraying Nanourea to plant leaves, the plants grow 40, 60, 80 DAS taller and produce yield. After harvest, maizecobs with ears measured 22.9 cm, with 100% RDF+Nanourea treatments having the highest measurement and 75%RDF (3 Application Timings) treatments having the lowest measurement. After 10 days of sowing, the treatments with 100% RDF+ FYM 5t ha⁻¹ had 81 plants the most. Fresh weight of seven maize plants is 3215 gm greatest in 100% RDF+FYM 5t ha⁻¹ treatments and 2167 gm lowest in 100% RDF+Nano urea treatments. Maizecobs length without ear is 16.4 cm lowest in Absolute control treatments and 18.9 cm highest in 100% RDF (2 Application timings) treatments, Seven maize plants treated with 100% RDF (2 application timings) had the maximum dry weight of 804 gm, whereas seven plants treated with 75% RDF had the lowest dry weight of 518 gm among all the treatments.

Keywords: Maize yield, Maize cob, Maize height, Nanourea.

Introduction

In the family Poaceae, which also includes wheat and rice, maize (Zea mays L.) is the third-most significant cereal crop in the world. Its oldest known ear, dating back to roughly 7000 years ago, was discovered in Mexico, where it first appeared. Maize (Zea mays L.) is the third important cereal crop in India after rice and wheat. It is sensitive to water logging those results in reduced yields of those

Received: December 18, 2022 / Revised: December 30, 2022 / Accepted: January 06, 2023 / Published: January 21, 2023 About the authors : Himanshu Sekhar Behera Corresponding author- Email:

grown in tropical and subtropical region. There are many applications for the crop. Human food, commercially processed food, starch manufacturing, and usage as pasture for livestock are a few of them. With its numerous cultivars and varied maturation times, maize has a greater range of tolerance for various environmental circumstances. Due to its photo-thermo-insensitive nature and among the cereals' best genetic output, maize is known as the "queen of cereals" and is produced all year long. It converts solar energy into dry matter very well since it is a C₄ plant. In the nation, human food accounts for more than 85% of the maize production. In addition to being used as human food and animal feed, maize has a wide range of industrial uses. People are really interested in eating green cobs that have been cooked. 10% protein, 4% oil, and 2-3% crude fiber may be found in maize seeds. A crucial source of several phyto-chemicals that are vital to human health is maize. This technique combines both organic and inorganic nutrient sources to achieve higher crop productivity, prevent soil degradation, and improve soil-water infiltration, contributing to the world's food supply in the process. It involves the prudent use of the right kinds of chemical fertilizers and organic resources. Wintertime maize yields are greater than rainy season yields. Wintertime conditions for maize include low temperatures, a clear sky, and more solar radiation absorption. Less insect pest infestation also results in improved yields. An exhaustible crop, maize needs a lot of nourishment to grow and flourish. The crop's production is influenced by the fertilizer management systems. The most common type of fertilizer used worldwide is inorganic since it produces a larger yield and more pleasing results. Utilizing nitrogen effectively is crucial for maize production because it boosts productivity, maximizes return on investment, and reduces NO₃ leaching to the ground. In particular, due to its function in photosynthesis and other biological activities including the absorption of water and minerals, vacuole storage, and xylem movement, nitrogen is a crucial nutrient for maize and a major regulator of grain output. In sub-Saharan Africa, maize now occupies 25 million hectares and is predominantly grown by smallholder systems, producing 38 million metric tons principally for food. In addition to providing N, P, and K, organic sources can also convert previously inaccessible sources of elemental nitrogen, bound phosphates, micronutrients, and decomposing plant residues into forms that the plant can use to absorb the nutrients.

Material and Methods

The field experiment was carried out at the Experimental Farm of the School of Agriculture on the campus of Lovely Professional University, Punjab, at 31° 24' N latitude & 75° 69' E longitude during kharif season of 2022. The soil texture is coarse loamy Typic Haplustept soil. with a pH of 7.4 at the experimental site. The experiment was laid out in a randomized block design, having sixteen treatments and replicated thrice. The following treatments were examined during an experiment: T₁Absolute control,T₂75% RDF,T₃75% RDF+FYM 5t ha⁻¹T₄75% RDF+Vermi-compost 2.5t ha⁻¹, T₅75% RDF+Nanourea,T₆75% RDF (3Application timings), T₇75%RDF(2Application timings), T₈75% RDF (4Application timings), T₉ 75%RDF (Basal application timings), T₁₀100%RDF (3Applications), T₁₁100% RDF+FYM 5t ha⁻¹, T₁₂100% RDF+Vermi-compost 2.5t ha⁻¹, T₁₃100% RDF+Nanourea, T₁₄100%RDF (4Application timings), T₁₅100% RDF (2 Application timings), T₁₆100% RDF (Basal Application timings). T₁₆

 K_2O kg ha⁻¹ was followed. Fertilizers including urea (46% N), single super phosphate (16% P₂O₅), and Muriate of potash (60% K₂O) were employed to deliver the nutrients N, P, and K, respectively. The hybrid PMH-13 variety of maize, which is a PAU variety, was used for this experiment. Net Plot size is 2.9m x 4.8m and Total Requirement area is 670M². Potassium and phosphorus both are given in fully via basal application. And recommended dose of nitrogen was applied basally. Crop yields were calculated using the net plot area. At the 20 DAS, 40 DAS, 60DAS, 80DAS and harvest stage, observations of the crop were made. Samples in each plot were marked randomly for recording biometric observations

Sl no	Treatment
1	$T_1 = Absolute control$
2	$T_2 = 75\%$ RDF (Recommended dose in fertilizer)
3	$T_3 = 75\% RDF + FYM 5 t ha^{-1}$ (Farm yard manure)
4	$T_4 = 75\%$ RDF+ Vermi-compost 2.5 t ha ⁻¹
5	$T_5 = 75\% RDF + Nano urea$
6	$T_6 = 75\%$ RDF (3 Application timings)
7	$T_7 = 75\%$ RDF (2 Application timings)
8	$T_8 = 75\%$ RDF (4 Application timings)
9	$T_9 = 75\%$ RDF (Basal application timings)
10	$T_{10} = 100\%$ RDF (3 Applications)
11	$T_{11} = 100\% RDF + FYM 5 t ha^{-1}$
12	$T_{12} = 100\%$ RDF+ Vermi-compost 2.5 t ha ⁻¹
13	$T_{13} = 100 \% RDF + Nano urea$
14	$T_{14} = 100\%$ RDF (4 Application timings)
15	$T_{15} = 100\%$ RDF (2 Application timings)
16	$T_{16} = 100\%$ RDF (Basal application timings)

Table-1 Treatment Details

Fig-1 (field excursion)

Fig-2 (Field Layout)

Fig-3 (crop sowing)

Figure 1 illustrates a proper field find out before an experiment, before sowing, the field's configuration is shown in Figure 2 and Figure 3 shows the sowing of the maize crop in the experiment field on May 25, 2022.

Fig -4 (PMH-13 Seed Packet)

Fig-5 (Sowing after Experimental field)

Fig-6 (experiment's water irrigation canal)

The PMH13 seed packet is shown in Fig. 4, and it is only available at the Punjab Agriculture University's Seed Store. Showing Fig. 5 Designing experiments and conducting them, Figure 6 illustrates the water irrigation channel via that water can easily flow and enter all treatment-wise plots.

Fig-7 (5 Days after sowing crop)

Fig-8 (Gap filing)

Fig-9 (15 days after Experimental site)

Fig. 7 shows that the plant height is measured at 1 to 2 cm 5 days after seeding; Figure 8 displays the gape filling all of the experiment's treatment plots and After 20 days of plant development, fig. 9 shows

Result and Discussion

Different fertilizer treatments using organic and inorganic materials were used in an experimental field. On 30, 40, 50, 60, 70, 80 days, as well as during harvest, data showed the maximum plant height. Following the peak plant height of 34cm, 50cm, 65cm, 93cm, 142cm, 160cm, and 173cm on 30, 40, 50, 60, 70, and 80 DAS and harvest stage, foliar spray of Nanourea is applied. The lowest plant height was recorded in 30, 40, 50, 60, 70, 80 days and a harvest that is 25cm, 41cm, 49cm, 87 cm, 129cm, 150cm, and 169 cm. foliar application of nanourea increased the plant height among all treatments. This might be due to positive effect of N, P, K which enhances the higher plant growth and canopy due to augment cell division and cell expansion (Mudalagiriyappa et al., 2016). After 10 days of seeding, 3356 plants across all treatments were counted. Data was collected on the experiment plant's height.

SI.	Т	Treatment	Plant height at 30 day(cm)				
no			R1	R2	R3	Mean	
1	T ₁	Absolute control	35	29	30	31.33	
2	T ₂	75% RDF	31	38	34	34.33	
3	T ₃	75% RDF+FYM 5t ha ⁻¹	31	36	37	34.67	
4	T ₄	75% RDF+Vermi-compost 2.5t ha ⁻¹	30	31	30	30.33	
5	T ₅	75% RDF+Nanourea	34	29	33	32.00	
6	T ₆	75%RDF(3Application timings)	29	28	32	29.67	
7	T ₇	75%RDF(2Application timings)	27	34	39	33.33	
8	T ₈	75%RDF(4Application timings)	31	37	31	33.00	
9	T9	75%RDF(Basal application timings)	32	31	34	32.33	
10	T ₁₀	100%RDF (3Applications)	36	33	32	33.67	
11	T ₁₁	100% RDF+FYM 5t ha ⁻¹	33	30	30	31.00	
12	T ₁₂	100%RDF+Vermi-compost 2.5t ha ⁻¹	29	33	27	29.67	
13	T ₁₃	100 % RDF+Nano urea	31	25	34	30.00	
14	T ₁₄	100%RDF(4Application timings)	34	31	37	34.00	
15	T ₁₅	100%RDF(2Application timings)	32	29	33	31.33	
16	T ₁₆	100%RDF(Basal application timings)	31	27	30	29.33	

Table-2 (30 Days after Plant height)

The maximum plant height was seen in T₇-75%RDF (2Application timings) x R₃ (39cm) treatments, while the lowest was observed in T₁₃-100% RDF + Nanourea x R₂ (25cm) treatments 30 days after planting.

Fig-10 ((30 Davs)	After	plant)
115 10 1	JU Duy		prancy

Sl. no	T	Treatment	Plant height at 40 day(cm)				
			R1	R2	R3	Mean	
1	T ₁	Absolute control	51	42	42	45.00	
2	T ₂	75% RDF	46	51	44	47.00	
3	T ₃	75% RDF+FYM 5t ha ⁻¹	53	47	40	46.67	
4	T ₄	75% RDF+Vermi-compost 2.5t	46	43	44	44.33	
		ha ⁻¹					
5	T5	75% RDF+Nanourea	50	50	39	46.33	
6	T ₆	75%RDF (3Application	41	41	41	41.00	
		timings)					
7	T ₇	75%RDF (2Application	47	42	43	44.00	
		timings)					
8	T ₈	75%RDF (4Application	42	38	51	43.67	
		timings)					
9	T9	75%RDF(Basal application	45	40	49	44.67	
		timings)					
10	T ₁₀	100%RDF (3Applications)	50	43	38	43.67	
11	T ₁₁	100% RDF+FYM 5t ha ⁻¹	42	41	36	39.67	
12	T ₁₂	100% RDF+Vermi-compost	47	50	42	46.33	
		2.5t ha ⁻¹					
13	T ₁₃	100 % RDF+Nano urea	49	41	49	46.33	
14	T ₁₄	100%RDF(4Application	39	50	47	45.33	
		timings)					
15	T ₁₅	100%RDF(2Application	41	43	51	45.00	
		timings)					

16	T ₁₆	100%RDF(Basal	application	40	51	48	46.33
		timings)					

Table-3 (40 Days after Plant height)

40 days after planting, T₃-75% RDF+FYM 5t ha⁻¹ x R₁ (53cm) RDF treatments produced the tallest plants, whereas T_{11} 100% RDF+FYM 5t ha⁻¹ x R₃ (36cm) treatments produced the shortest.

Т Treatment Plant height at 50 day(cm) Sl. no R2 **R3** Mean **R1** T_1 Absolute control 59 58 61 59.33 1 2 75% RDF T_2 61 67 52 60.00 75% RDF+FYM 5t ha⁻¹ 3 T_3 64 58 63 61.67 75% RDF+Vermi-compost 2.5t 4 T_4 59 57 59.33 62 ha⁻¹ 5 T₅ 75% RDF+Nanourea 63 49 60 57.33 (3Application 6 T_6 75% RDF 59 57 57 57.67 timings) 7 (2Application T_7 75%RDF 61 62 54 59.00 timings) 8 T_8 75% RDF (4Application 59 67 59 61.67 timings) 9 T9 75%RDF (Basal application 54 52 63 56.33 timings) 100%RDF (3Applications) 10 T_{10} 51 55 55 53.67

Fig-11	(40 Dave)	after	Plant)
LI5-II	140 Davs	aner	r lanu

11	T ₁₁	100% RDF+FYM 5t ha ⁻¹	59	53	59	57.00
12	T ₁₂	100% RDF+Vermi-	62	60	54	58.67
		compost2.5tha ⁻¹				
13	T ₁₃	100 % RDF+Nano urea	61	59	65	61.67
14	T ₁₄	100% RDF (4Application	57	57	61	58.33
		timings)				
15	T ₁₅	100% RDF (2 Application	55	55	68	59.33
		timings)				
16	T ₁₆	100%RDF (Basal application	63	59	59	60.33
		timings)				

Table-4 (50 Days after plant height)

The tallest plants were generated by T₁₅-100% RDF (2 Application timings) x R₃ (68 cm) treatments, while the shortest plants were produced by T₅-75% RDF+Nanourea x R₂ (49 cm) treatments, 50 days after planting.

Fig-12 (50 Days after Plant)

Sl. no	Т	Treatment	Plant height at 60 day(cm)			
			R1	R2	R3	Mean
1	T ₁	Absolute control	81	89	101	90.33
2	T ₂	75% RDF	73	91	89	84.33
3	T ₃	75% RDF+FYM 5t ha ⁻¹	79	84	91	84.67
4	T4	75% RDF+Vermi-compost 2.5t ha ⁻¹	89	92	97	92.67
5	T ₅	75% RDF+Nanourea	93	89	89	90.33
6	T ₆	75% RDF (3Application timings)	100	91	100	97.00
7	T ₇	75%RDF (2Application timings)	94	93	89	92.00
8	T ₈	75% RDF (4Application timings)	89	88	93	90.00
9	T9	75%RDF (Basal application timings)	85	89	91	88.33
10	T ₁₀	100%RDF (3Applications)	109	91	93	97.67

11	T ₁₁	100% RDF+FYM 5t ha ⁻¹	71	96	89	85.33
12	T ₁₂	100% RDF+Vermi-compost 2.5t ha ⁻¹	101	89	100	96.67
13	T ₁₃	100 % RDF+Nano urea	93	87	89	89.67
14	T ₁₄	100% RDF (4Application timings)	85	89	98	90.67
15	T ₁₅	100% RDF (2 Application timings)	87	92	91	90.00
16	T ₁₆	100%RDF (Basal application	102	90	102	98.00
		timings)				

Table-5 (60 Days after plant height)

The tallest plants were generated by T₁₀- 100%RDF (3Applications) x R₁ (109 cm) treatments, while the shortest plants were produced by T₁₁-100% RDF+FYM 5t ha⁻¹ x R₁ (71 cm) treatments, 60 days after planting.

Fig-13 (60 Days after Plant)

Sl. no	Т	Treatment	Plant height at 70 day(cm)			
			R1	R2	R3	Mean
1	T ₁	Absolute control	119	136	139	131.33
2	T ₂	75% RDF	103	141	137	127.00
3	T ₃	75% RDF+FYM 5t ha ⁻¹	115	129	141	128.33
4	T ₄	75% RDF+Vermi-compost 2.5t ha ⁻¹	110	143	139	130.67
5	T ₅	75% RDF+Nanourea	134	129	142	135.00
6	T ₆	75% RDF (3Application timings)	143	137	147	142.33
7	T ₇	75%RDF (2Application timings)	121	140	151	137.33
8	T ₈	75% RDF (4Application timings)	132	139	127	132.67
9	T9	75%RDF (Basal application	134	137	149	140.00
		timings)				
10	T ₁₀	100%RDF (3Applications)	129	141	140	136.67

11	T ₁₁	100% RDF+FYM 5t ha ⁻¹	120	137	138	131.67
12	T ₁₂	100% RDF+Vermi-compost 2.5t	119	135	136	130.00
		ha ⁻¹				
13	T ₁₃	100 % RDF+Nano urea	139	140	139	139.33
14	T ₁₄	100% RDF (4Application timings)	144	144	153	147.00
15	T ₁₅	100% RDF (2 Application timings)	149	131	139	139.67
16	T ₁₆	100%RDF (Basal application	138	130	151	139.67
		timings)				

Table-6 (70 Days after plant height)

The tallest plants were generated by T₁₄-100% RDF (4Application timings) x R₃ (153 cm) treatments, while the shortest plants were produced by T₂-75% RDF x R₁ (103 cm) treatments, 70 days after planting.

Fig-14 (70 Days after Plant)

Sl. no	Т	Treatment	Plant height at 80 day(cm)			/(cm)
			R1	R2	R3	Mean
1	T ₁	Absolute control	142	157	155	151.33
2	T ₂	75% RDF	139	150	154	147.67
3	T ₃	75% RDF+FYM 5t ha ⁻¹	142	161	163	155.33
4	T ₄	75% RDF+Vermi-compost 2.5t ha ⁻¹	159	163	161	161.00
5	T5	75% RDF+Nanourea	151	150	156	152.33
6	T ₆	75% RDF (3Application timings)	163	152	152	155.67
7	T ₇	75%RDF (2Application timings)	155	154	161	156.67
8	T ₈	75% RDF (4Application timings)	161	161	167	163.00
9	T9	75%RDF (Basal application	152	164	159	158.33
		timings)				
10	T ₁₀	100%RDF (3Applications)	150	159	168	159.00
11	T ₁₁	100% RDF+FYM 5t ha ⁻¹	153	162	159	158.00

12	T ₁₂	100% RDF+Vermi-compost 2.5t	151	154	167	157.33
		ha ⁻¹				
13	T ₁₃	100 % RDF+Nano urea	156	160	159	158.33
14	T ₁₄	100% RDF (4Application timings)	159	153	157	156.33
15	T ₁₅	100% RDF (2 Application timings)	161	162	160	161.00
16	T ₁₆	100%RDF (Basal application	158	157	172	162.33
		timings)				

Table-7 (80 Days after plant height)

80 days after planting, T_{16} -100% RDF (Basal Application timings) x R₃ (172cm) treatments resulted in the tallest plants, whereas T_2 -75% RDF x R₁ (139cm) treatments resulted in the shortest plants.

Fig-15 (80 Days after Plant)

Sl. no	Т	Treatment	Plant height at Harvest(cm)			
			R1	R2	R3	Mean
1	T ₁	Absolute control	169	174	174	172.33
2	T ₂	75% RDF	167	176	179	174.00
3	T ₃	75% RDF+FYM 5t ha ⁻¹	163	167	177	169.00
4	T ₄	75% RDF+Vermi-compost 2.5t ha	171	170	169	170.00
5	T ₅	75% RDF+Nanourea	173	173	174	173.33
6	T ₆	75% RDF (3Application timings)	170	171	177	172.67
7	T ₇	75%RDF (2Application timings)	169	169	168	168.67
8	T ₈	75% RDF (4Application timings)	177	177	171	175.00
9	T9	75%RDF (Basal application	173	173	178	174.67
		timings)				
10	T ₁₀	100%RDF (3Applications)	175	170	170	171.67
11	T ₁₁	100% RDF+FYM 5t ha ⁻¹	169	174	179	174.00

12	T ₁₂	100% RDF+Vermi-compost 2.5t	178	168	178	174.67
		ha ⁻¹				
13	T ₁₃	100 % RDF+Nano urea	173	173	169	171.67
14	T ₁₄	100% RDF (4Application timings)	169	177	171	172.33
15	T ₁₅	100% RDF (2 Application timings)	172	170	176	172.67
16	T ₁₆	100%RDF (Basal application	170	168	183	173.67
		timings)				

Table-8 (Plant height at Harvest)

The maximum plant height was seen in T₁₆- 100%RDF (Basal application timings) x R₃ (183cm) treatments, while the lowest was observed in T₃-75% RDF+FYM 5t ha⁻¹ x R₁ (163cm) treatments at harvest time of plants.

Fig-16 (plant's harvest phase)

CONCLUSION

According to the results of the current experiment, soil compaction has a negative impact on crop phenology, which lowers yields and reduces heat use efficiency The current study demonstrated the need of considering characteristics related to soil strength, soil temperature, and soil nutrition for better maize yield prediction utilizing multiple thermal indices.

ACKNOWLEDGEMENT

We thank the Department of Soil Science and Agricultural Chemistry, School of Agriculture, Lovely Professional University, Punjab, India for providing field and lab facilities to conduct this experiment. I would especially want to thank Dr. Raj Kumar for guiding me through each and every tricky experimental condition.

Reference

Chandrashekara CP, Harlapur SI, Murlikrishna S, Girijesh GK. Response of maize (Zea maize L.) to organic manures with inorganic fertilizers, Karnataka J.Agric. Sci. 2000;13(1):144-146.

Joshi PK, Singh NP, Singh NN. Maize in India: Production system, constraint and research priority, International maize and wheat improvement centre, Maxico; 2005

Kopsell DA, Armel GR, Mueller TC, SamsCC, Deyton DE, McElroy JS, Kopsell DE. Increase in nutritionally important sweet corn kernel carotenoids following mesotrione and atrazine applications. Journal of Agricultural and Food Chemistry. 2009;57:6362–6368

Liu Y, Li SQ, Chen F, Yang SJ, Chen XP.Soil water dynamics and water use efficiency in spring maize (Zea mays L)fields subjected to different water management practices on the Loess Plateau, China. Agricultural Water Management. 2010b;97:769–775

Lohry RD. Effect on N fertilizer rate and nitrapyrin on leaf chlorophyll, leaf N concentration, and yield of three irrigated maize hybrids in Nebraska. Ph.D. diss.Univ. of Nebraska, Lincoln;1989.

Mangeisdorf PC, Mac Neish RS, Galinat WE. Domesti- cation of corn science. 1964;143:538-545

Mohammadi GR, Ghobadi ME, SheikhehPoor S. Phosphate biofertilizer, row spacing and plant density effects oncorn (Zea mays L.) yield and weed growth. American J Plant Sci. 20

Mudalagiriyappa.; Sameer Ali M.; Ramachandrappa B. K.; Nagaraju and Shankaralingappa B.C. 2016. Effect of foliar application of water soluble fertilizers on growth, yield and economics of chickpea (Cicer arietinum L.). Agricultural Research Communication Centre, 39 (4): 610-61312;3:425-429.

Purseglove JW. Tropical crops, monocotyledons. Longman Group Limited, London. 1972;52-54 Rathore TR, Warsi MZK, Singh NN, VasalSK. Production of maize under excess and soil moisture (water logging) conditions. Paper presented in the 4th Asian Regional Maize Conference held during 23 to 28Feb, 1998 at Manila, Philippines;1998.

Reddy G, Rani PL, Sreenivas DR, Rao VP,Surekha K, Sankar S. Influence of dates of sowing and nitrogen on growth and yield of Kharif maize under irrigated conditions in South Telangana Agroclimatic zone of Andhra Pradesh, India. Int. J. Bio-resourceStress Manag. 2013;4:34–42. Sanginga N, Woomer PL. Integrated soil fertility management in africa: principles,practices, and developmental process.CIAT, Cali, Colombia; 2009

Singh MV, Prakash V, Singh B, Shahi HN.Response of maize hybrids to integrated nutrient management Haryana Journal of Agronomy. 2014;30(1):65-69

Smale M, Byerlee D, Jayne T. Maize revolutions in Sub Saharan Africa. Forthcoming, World Bank, Washington, DC, and Tegemeo Institute, Kenya; 2011