Effect of Hot Water Treatment on Quality and Shelf-Life of Rambutan

Dondy A. Setyabudi, Kirana S. Sasmitaloka, Wisnu Broto, Sulusi Prabawati, Setyadjit

Abstract

Rambutan is a non-climacteric fruit and must be harvested at the peak of ripeness. Fruit browning and decay can occur 1 to 3 days after harvest and during storage and transportation. Hot water treatment holds promise for delaying the postharvest fruit quality decay and reducing pathogen growth. This research aims to investigate the effects of incorporating hot water treatment and temperature-controlled storage on the postharvest quality of rambutans. Rambutan fruit was treated in a hot water bath at 40° and 50°C for 0, 2, 4, 6, 8, and 10 minutes. Then, it was stored for 8 days at ambient (28–30°C) and controlled (10–18°C) temperatures. Combined hot water treatment and controlled storage temperature was an effective approach for managing postharvest decay, controlling postharvest diseases and insect pests, and maintaining the postharvest quality of the rambutan fruit. Rambutan fruit treated with hot water (40–50°C) for 6–10 minutes and stored at controlled temperature (10–18°C) could remain fresh for more than 8 days after harvest.

 

Keywords: hot water treatment, rambutan, temperature storage, quality.

 

 


Full Text:

PDF


References


JAHURUL M. H. A., AZZATUL F. S., SHARIFUDIN M. S., NORLIZA M. J., HASMADI M., LEE J. S., PATRICIA M., JINAP S., RAMLAH GEORGE M. R., FIROZ KHAN M., and ZAIDUL I. S. M. Functional and nutritional properties of rambutan (Nephelium lappaceum L.) seed and its industrial application : A review. Trends in Food Science & Technology, 2020, 99: 367–374. https://doi.org/10.1016/j.tifs.2020.03.016

STATISTICS INDONESIA. Statistics of Annual Fruit and Vegetable Plants 2018. BPS-Statistics Indonesia, Jakarta, 2019.

HERNANDEZ-HERNANDEZ C., AGUILAR, C. N., RODRIGUEZ-HERRERA, R., FLORES-GALLEGOS A. C., MORLETT-CHÁVEZ J., GOVEA-SALAS M., and ASCACIO-VALDÉS J. A. Rambutan (Nephelium lappaceum L.): Nutritional and functional properties. Trends in Food Science & Technology, 2019, 85: 201–210. https://doi.org/10.1016/j.tifs.2019.01.018

MOTA M. D., DA BOA MORTE A. N., SILVA L. C. R. C. E., and CHINALIA F. A. Sunscreen protection factor enhancement through supplementation with Rambutan (Nephelium lappaceum L) ethanolic extract. Journal of Photochemistry and Photobiology B: Biology, 2020, 205: 111837. https://doi.org/10.1016/j.jphotobiol.2020.111837

LI W., ZENG J., and SHAO Y. Rambutan — Nephelium lappaceum. In: RODRIGUES S., DE OLIVEIRA SILVA E., and DE BRITO E. S. (eds.) Exotic Fruits. Academic Press, 2018: 369–375. http://dx.doi.org/10.1016/B978-0-12-803138-4.00048-4

HALIM H. R., HAPSARI D. P., JUNAEDI A., RITONGA A. W., NATAWIJAYA A., POERWANTO R., SOBIR, WIDODO W. D., and MATRA D. D. Metabolomics dataset of underutilized Indonesian fruits ; rambai (Baccaurea motleyana), nangkadak (Artocarpus nangkadak), rambutan (Nephelium lappaceum) and Sidempuan salak (Salacca sumatrana) using GCMS and LCMS. Data in Brief, 2019, 23: 1–3. https://doi.org/10.1016/j.dib.2019.103706

SUPAPVANICH S. Effects of salicylic acid incorporated with lukewarm water dips on the quality and bioactive compounds of rambutan fruit (Nephelium lappaceum L.). Chiang Mai University Journal of Natural Sciences, 2015, 14(1): 23–38.

BOKHARI S. U. F., WANG L., ZHENG Y., and JIN P. Pre-storage hot water treatment enhances chilling tolerance of zucchini (Cucurbita pepo L) squash by regulating arginine metabolism. Postharvest Biology and Technology, 2020, 166: 111229. https://doi.org/10.1016/j.postharvbio.2020.111229

VEGA-ALVAREZ M., SALAZAR-SALAS N. Y., LOPEZ_ANGULO G., PINEDA-HIDALGO K. V., LÓPEZ-LÓPEZ M. E., VEGA-GARCÍA M. O., DELGADO-VARGAS F., and LÓPEZ-VALENZUELA J. A. Metabolomic changes in mango fruit peel associated with chilling injury tolerance induced by quarantine hot water treatment. Postharvest Biology and Technology, 2020, 169: 111299. https://doi.org/10.1016/j.postharvbio.2020.111299

SALAZAR-SALAS N. Y., VALENZUELA-PONCE L., VEGA-GARCIA M. O., PINEDA-HIDALGO K. V., VEGA-ALVAREZ M., CHAVEZ-ONTIVEROS J., DELGADO-VARGAS F., and LOPEZ-VALENZUELA J. A. Protein changes associated with chilling tolerance in tomato fruit with hot water pre-treatment. Postharvest Biology and Technology, 2017, 134: 22–30. http://dx.doi.org/10.1016/j.postharvbio.2017.08.002

LOAYZA F. E., BRECHT J. K., SIMONNE A. H., PLOTTO A., BALDWIN E. A., BAI J., and LON-KAN E. Enhancement of the antioxidant capacity of ripe tomatoes by the application of a hot water treatment at the mature-green stage. Postharvest Biology and Technology, 2020, 161: 111314.

https://doi.org/10.1016/j.postharvbio.2020.111314

VILAPLANA R., CHICAIZA G., VACA C., and VALENCIA-CHAMORRO S. Combination of hot water treatment and chitosan coating to control anthracnose in papaya (Carica papaya L.) during the post-harvest period. Crop Protection, 2020, 128: 105007.

https://doi.org/10.1016/j.cropro.2019.105007

YANG R., HAN Y., HAN Z., ACKAH S., LI Z., BI Y., YANG Q., and PRUSKY D. Hot water dipping stimulated wound healing of potato tubers. Postharvest Biology and Technology, 2020, 167: 111245. https://doi.org/10.1016/j.postharvbio.2020.111245

CHIABRANDO V., & GIACALONE G. Efficacy of hot water treatment as sanitizer for minimally processed table grape. Journal of Cleaner Production, 2020, 257: 120364. https://doi.org/10.1016/j.jclepro.2020.120364

ENDO H., OSE K., BAI J., and IMAHORI Y. Effect of hot water treatment on chilling injury incidence and antioxidative responses of mature green mume (Prunus mume) fruit during low temperature storage. Scientia Horticulturae, 2019, 246: 550–556.

https://doi.org/10.1016/j.scienta.2018.11.015

ASSOCIATION OF OFFICIAL ANALYTICAL CHEMIST. Official Methods of Analytical of The Association of Official Analytical Chemist. Association Of Official Analytical Chemist, Washington, District of Columbia, 2019.

SONG C., LI A., CHAI Y., LI Q., LIN Q., and DUAN Y. Effects of 1-Methylcyclopropene combined with modified atmosphere on quality of fig (Ficus carica L.) during post-harvest storage. Journal of Food Quality, 2019, 2019: 2134924. https://doi.org/10.1155/2019/2134924

MUHAMED S., & KURIEN S. Phenophases of rambutan (Nephelium lappaceum L.) based on extended BBCH- scale for Kerala, India. Current Plant Biology, 2018, 13: 37–44. http://dx.doi.org/10.1016/j.cpb.2017.10.001

CHEN Y., GRIMPLET J., DAVID K., CASTELLARIN S. D., TEROL J., WONG D. C. J., LUO Z., SCHAFFER R., CELTON J.-M., TALON M., GAMBETTA G. A., and CHERVIN C. Ethylene receptors and related proteins in climacteric and non-climacteric fruits. Plant Science, 2018, 276: 63–72. https://doi.org/10.1016/j.plantsci.2018.07.012

KHAREL K., YEMMIREDDY V. K., GRAHAM, C. J., PRINYAWIWATKUL W., and ADHIKARI A. Hot water treatment as a kill-step to inactivate Escherichia coli O157:H7, Salmonella enterica, Listeria monocytogenes and Enterococcus faecium on in- shell pecans. LWT, 2018, 97: 555–560. https://doi.org/10.1016/j.lwt.2018.07.048

LUFU R., AMBAW A., and OPARA U. L. Water loss of fresh fruit : Influencing pre-harvest, harvest and post-harvest factors. Scientia Horticulturae, 2020, 272: 109519. https://doi.org/10.1016/j.scienta.2020.109519

CHÁVEZ-SÁNCHEZ I., CARRILLO-LÓPEZ A., VEGA-GARCÍA M., and YAHIA E. M. The effect of antifungal hot-water treatments on papaya postharvest quality and activity of pectinmethylesterase and polygalacturonase. Journal of Food Science and Technology, 2013, 50(1): 101–107. https://doi.org/10.1007/s13197-011-0228-0

BASSAL M., & EL-HAMAHMY M. Hot water dip and preconditioning treatments to reduce chilling injury and maintain post-harvest quality of Navel and Valencia oranges during cold quarantine. Postharvest Biology and Technology, 2011, 60(3): 186–191. https://doi.org/10.1016/j.postharvbio.2011.01.010

GONZÁLEZ-BUESA J., & SALVADOR M. L. An Arduino-based low cost device for the measurement of the respiration rates of fruits and vegetables. Computers and Electronics in Agriculture, 2019, 162: 14–20. https://doi.org/10.1016/j.compag.2019.03.029

HO P. L., TRAN D. T., HERTOG M. L. A. T. M., and NICOLAÏ B. M. Modelling respiration rate of dragon fruit as a function of gas composition and temperature. Scientia Horticulturae, 2020, 263: 109138. https://doi.org/10.1016/j.scienta.2019.109138

LUFU R., AMBAW A., and OPARA U. L. The contribution of transpiration and respiration processes in the mass loss of pomegranate fruit (cv. Wonderful). Postharvest Biology and Technology, 2019, 157: 110982. https://doi.org/10.1016/j.postharvbio.2019.110982

JIANG Y.-L., CHEN L.-Y., LEE T.-C., and CHANG P.-T. Improving post-harvest storage of fresh red-fleshed pitaya (Hylocereus polyrhizus sp.) fruit by pre-harvest application of CPPU. Scientia Horticulturae, 2020, 273: 109646. https://doi.org/10.1016/j.scienta.2020.109646

TENGJIAO L., ZIRUI Z., FEIYANG J., and BINGKUI C. An analytic algorithm of time-varying mesh stiffness of helical gears considering temperature effect. Journal of Hunan University Natural Sciences, 2020, 47(2): 6-13. http://johuns.net/index.php/journal/article/view/384

ASICHE W. O., MITALO O. W., KASAHARA Y., TOSA Y., MWORIA E. G., USHIJIMA K., NAKANO R., and KUBO Y. Effect of storage temperature on fruit ripening in three kiwifruit cultivars. The Horticulture Journal, 2017, 86(3): 403–410. https://doi.org/10.2503/hortj.OKD-028


Refbacks

  • There are currently no refbacks.