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Abstract: Stress corrosion cracking is considered one of the major causes of failures in oil and gas 

pipelines. This is why modeling the reliability of oil and gas pipelines subjected to stress corrosion cracking is very 

important; at the same time it is very complex due to various parameters affecting the stress corrosion cracking. 

Modern modeling approaches include physical-based and data-driven models that are still not competitive to cope 

with the complex nature of the stress corrosion cracking mechanism. In today's research, researchers prefer machine 

learning oriented algorithms and models to address such complex mechanisms due to their increasing popularity. 

These algorithms and models have the capability of tackling multiple factors and their impact on output response, 

allowing a prediction of the probability of failure. This research proposes some extensive simulations that lead 

eventually to a rich dataset that will define some significant factors on which stress corrosion cracking depends. In 

addition to this, the proposed research not only involves the correlation of derived dataset with the already published 

dataset but will also provide a comprehensive validation in between the proposed experimental work and machine 

learning based simulations. This research aims to propose a model that considers the most frequent parameters so 

that the performance of the proposed technique can be evaluated robustly and may provide a better understanding to 

upcoming researchers, including oil and gas personals.    

Keywords: corrosion, finite element, reliability, machine learning, artificial intelligence. 

 

基于深度学习的油气管道应力腐蚀开裂可靠性模型：回顾与概念 

 

摘要：应力腐蚀开裂被认为是油气管道故障的主要原因之一。这就是为什么对应力腐蚀

开裂的油气管道的可靠性进行建模非常重要的原因。同时由于各种参数影响应力腐蚀开裂，

因此非常复杂。现代建模方法包括基于物理的模型和数据驱动的模型，这些模型仍然无法应

对应力腐蚀开裂机制的复杂性。在当今的研究中，研究人员更喜欢面向机器学习的算法和模

型来解决这种复杂的机制，因为它们越来越受欢迎。这些算法和模型具有解决多个因素及其

对输出响应的影响的能力，从而可以预测失败的可能性。这项研究提出了一些广泛的模拟，

最终导致了一个丰富的数据集，该数据集将定义应力腐蚀开裂所依赖的一些重要因素。除此

之外，拟议的研究不仅涉及派生数据集与已经发布的数据集的相关性，还将在拟议的实验工

作和基于机器学习的仿真之间提供全面的验证。这项研究旨在提出一个考虑最频繁参数的模

型，以便可以对所提出技术的性能进行稳健的评估，并可以为即将到来的研究人员（包括石

油和天然气行业人士）提供更好的理解。 

关键词：腐蚀，有限元，可靠性，机器学习，人工智能。 
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1. Introduction 
Oil and gas pipelines are considered the lifeline for 

the oil and gas industry. They are regarded as the most 

economical mode of transporting hydrocarbons from 

one destination to another compared to other methods, 

such as train, road vehicles, and air [1]. These 

pipelines, which carry very expensive oil and gas, are 

also very dangerous if the pipe leaks or bursts, which 

could cause a massive financial and human loss. 

Therefore, it is critical to predicting the integrity of oil 

and gas pipelines to make proper maintenance 

strategies. Integrity management of oil and gas 

pipelines consists of three main steps:  1) corrosion 

detection, 2) corrosion growth, and 3) risk assessment. 

According to a report by the Conservation of Clean Air 

and Water in Europe (CONCAWE), factors causing 

pipeline failure are 1) corrosion, 2) mechanical 

damage, 3) natural, and 4) third party [2]. Among the 

causes of failure, corrosion is considered one of the 

significant reasons for pipeline failure, contributing 

30.3% after third party (33.3%) and other causes 

contributes as Mechanical (25.25%), Operational 

(7.7%), Natural (4.4%) and others (1.1%), as shown in 

Fig. 1. According to the Pipeline and Hazardous 

Material Safety Administration (PHMSA), which is 

part of the United States Department of Transportation, 

an average of 287 pipeline incidents, 14 deaths, and 59 

injuries happen every year [3]. 

 
Fig. 1 Percentage of causes of damage in oil and gas pipeline [4] 

 

Corrosion is very complex phenomenon caused by 

various factors, including electrochemical reaction, 

material properties, environmental factors, stresses and 

the properties of the medium flowing in the pipe. 

Below are several types of corrosion, such as 1) 

CO2 corrosion, 2) microbiological induced corrosion, 

3) pitting corrosion, and  4) stress corrosion cracking 

(SCC), which is different from other corrosion failures 

[5] because it is caused by the combined effects of 

environment [6, 7], stresses (applied or residual) [8] 

and material properties [9]. SCC is among the most 

dangerous types of failures because the prediction of its 

failure before its occurrence is challenging. Until the 

present, three modeling approaches have been widely 

used for the development of a model to predict 

corroded oil and gas pipe integrity. These are 

deterministic models, probabilistic models, machine 

learning models, and hybrid models [10]. But no mode 

currently can predict corroded oil and gas pipeline 

reliability in an accurate and realistic manner [11, 12]. 

Deterministic models based on the physics behind 

the process can provide its details, but they are very 

complex to compute and consider only a few 

parameters, making the model conservative in nature. 

Keeping in view the conservative and complex nature 

of these models, as well as scientists’ attempts to adopt 

machine learning models, machine learning has 

successfully used in the field of reliability of 

engineering systems, including oil and gas pipelines. 

Hybrid models are the combination of both model-

based and machine learning models, taking advantage 

of both models.  

Various researchers have successfully modeled the 

corrosion integrity of oil and gas pipelines using 

machine learning approaches presented in the literature 

part of this proposal. From the literature, it is found that 

deep learning is receiving more attention from 

researchers in the integrity of engineering systems. 

Deep learning aims to learn higher-level abstractions 

from the raw data [13, 14]. Deep learning models 

require no hand-crafted features. Instead, they will 

automatically learn a hierarchical feature representation 

from raw data [15-17]. In deep learning, a deep 

architecture with multiple layers is built up for 

automating feature design. Specifically, each layer in 

deep architecture performs a nonlinear transformation 

on the outputs of the previous layer, so that through 

deep learning models the data are represented by 

different levels of hierarchy of features. Convolutional 

neural network, auto-encoders and deep belief network 

are the mostly known models in deep learning. 

Depending on the usage of label information, the deep 

learning models can be learned in either a supervised or 

an unsupervised manner. Deep learning models achieve 

remarkable results in reliability of various engineering 

applications including batteries [18], bearings [19] and 

aero engines [20] and turbines [21]. A recent survey 

indicated that the deep learning models have not been 

exploited in the field of integrity estimation for oil and 

gas corroded pipelines, even though deep learning 

models can improvise the integrity estimation 

significantly [22]. Similarly, after a comprehensive 

literature analysis, we found that the deep learning 

models can act as major contributors to predict 

integrity estimation in corroded oil and gas pipelines. 

Therefore, this research study is focused on 

developing the deep learning-based corroded oil and 

gas pipeline integrity prediction model, more 

specifically for subjected to stress corrosion cracking. 

After its successful development, the model can be 

used as a simulation-free reliability model for oil and 

gas pipelines subjected to stress corrosion cracking.  
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2. Literature Review  
Ren, Qiao et al. [23] predicted the internal corrosion 

rate of underground natural gas pipelines in China 

using Back-Propagation artificial neural network (BP 

ANN). The experimental run collects the inputs used in 

this model. Natural gas pipeline mileage, elevation 

difference, pipe inclination, pressure, liquid holdup, 

and Reynolds number are considered in this study as 

inputs. The research finding is that the BP neural 

network can predict the natural gas pipeline rate, and 

the model showed an excellent convergence ability 

[23].  

 Liao, Yao, et al. [24] used ANN-GA, ANN-PSO, 

and only ANN to predict the internal corrosion rate of 

natural wet gas pipelines. Among these three models, 

ANN-PSO outperformed the rest. The Grey relational 

analysis (GRA) technique was used before feeding the 

data into the model to check the collected data's input 

variables' importance. The model's inputs are gas 

maximum wall stress, liquid holdup, heat transfer 

coefficient of the inner wall, deposition rate, superficial 

velocity total liquid film, maximum wall shear stress, 

and pipe angle [24].  

Chamkalani, Nareh'ei et al. [26] predicted the CO2 

corrosion rate of oil and gas pipelines using ANN. The 

inputs considered in the study are pH, velocity, 

temperature, and partial pressure of CO2. The dataset of 

experimental research of Dugstad, Lunde, et al. [25] 

was used as the training dataset for the model. This 

dataset contains seven hundred and eighteen (718) data 

points. A sensitivity analysis was also performed that 

closely matched the experimental model results [26].  

De Masi, Vichi et al. [27] predicted internal 

corrosion rate, metal loss, and defect area of a 20 km 

subsea oil and gas pipeline by using ANN and 

highlighted the portion of the pipeline that had a high 

risk of corrosion. The model combines the geometrical 

profile of a real pipeline, flow simulation, physical-

based corrosion models and the De-waard model. After 

trying various learning algorithms, the Lavenberg-

Marquadt (LM) algorithm was chosen as the best, with 

20 as the highest number of hidden neurons found. This 

model performed better than the deterministic models 

[27, 28]. This model has the significant drawback that 

the operation needs to be stopped for inspection of the 

pipe. Also, the size of the dataset is smaller, which can 

decrease the model's accuracy. 

Gabetta, De Masi et al. [29] used ANN for the 

prediction of internal corrosion rate, metal loss and area 

of defects for onshore gas pipelines. The inputs to the 

model considered in this study are geometrical features 

(elevation, inclination and concavity) and fluid 

dynamic multiphase variables (temperature profile, 

pressure profile, velocity profile of each phase, flow 

regimens and phase holdup). This model has the 

drawback of having a small dataset [29]. 

Din, Ithnin et al. [30] applied ANN to predict 

corrosion rate in carbon steel oil and gas pipelines. The 

inputs in this study were orientation, depth, length, and 

width of the corrosion defect. In-line inspection (ILI) 

data has been used to develop the model. The model 

predicts the pipe defect's length and depth, which can 

be used to predict the corrosion rate [30]. Although the 

prediction results obtained from ANN models have 

acceptable accuracy, the variables' uncertainty due to 

the deviation of test equipment measurements and the 

uncertainties in the natural gas system are neglected. 

Mazzella, Hayden et al. [31] used ANN to estimate 

underground oil and gas pipeline corrosion rates. A 

North American pipeline operator dataset was used for 

the development of the model. The inputs considered in 

this study are related to the environment (sulfide 

pollution, chloride pollution, time of wetness, annual 

average temperature, number of years below 0 degrees) 

and pipeline parameters (actual diameter, year of mill 

run, pipe manufacturer) [31]. 

Nayak, Anarghya et al. [32] used ANN to predict 

the CO2 corrosion rate of the pipeline. The inputs to 

the model considered in this study are pH, the partial 

CO2 pressure, velocity and temperature. The dataset in 

this study was generated using an experimental setup. 

The optimum model was selected at five hidden 

neurons [32]. 

Sinha developed a probabilistic neural network to 

predict the probability of failure. This model can 

predict POF directly from the ILI data without 

extensive calculation of the conventional reliability 

methods, e.g., Monte Carlo simulations. The purpose of 

this model is to replace the traditional MC simulation. 

The data set for the neural network training was 

obtained by the simulation method [33]. This model 

can maintain the oil and gas pipeline, and benefit from 

reducing overall repair and maintenance costs. 

Silakorn, Puncreobutr et al. [34] developed an ANN 

model to predict metal loss due to Top of Line (TOL) 

corrosion in the Gulf of Thailand carbon steel three-

phase pipeline, using company field data. The inputs of 

the models considered were the parameters of corrosion 

rate (log distance, topography, pipe slope, gas flow 

rate, water flow rate, temperature, pressure, CO2, pipe 

nominal thickness, no. of sea-line batch treatment 

(SBT) per year, direction of east, topography series) 

and the output is the wall loss. In the first phase of this 

study, three pipelines with a data sample of six 

obtained from magnetic flux leakage were used to 

develop the model. Then two other pipelines which 

were not used during the training were used for testing 

purpose. The results of the model gave better 

predictions than the traditional simulation-based 

models. In the second phase of this project, 15 

pipelines were used to develop a model. In this phase, 

sensitivity analysis for the input parameters was also 

carried out to check whether the inputs are important or 

not. The dataset consists of 6 data samples of 3 pipes, 

and these parameters were generated from the 

corrosion simulation model. The modes' accuracy was 
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2.6 to 6.5, greater than the other simulation models. 

The ANN model is capable of predicting the metal loss 

for new and existing pipelines [27]. The ultimate goal 

of the research is to reduce pipeline-associated costs. 

The model can not accurately predict if the data outside 

the data used for training is used.  

Carvalho, Rebello et al. [35] developed ANN to 

predict the defects in the pipe weld zone of the API 5L-

X65 pipeline. Two ANN models were used. The first 

was used to predict whether the signal was defective or 

non-defective. The other model was used to predict 

whether the defect was Internal Corrosion (IC), 

External Corrosion (EC), or Lack of Penetration (LP). 

For the model inputs, the magnetic flux leakage (MFL) 

signals were obtained from Pipe Inspection Gauge 

(PIG). The PIG was equipped with 136 hall sensors, 

and 1,025 data points were used for the ANN inputs. 

Preprocessing of the MFL signals was carried out using 

wavelet transformation, moving average filter, Fourier 

analysis, and Savitzky-Golay filter to improve the 

performance of ANN. The results showed that the 

model is 94.2% accurate for classifying defects; 92.5% 

for corrosion and LP; and 71.7% for classifying the EC, 

IC, and LP [28]. 

Tian, Gao et al. [36] used a wavelet neural network 

to predict the degree of corrosion of submarine oil 

pipeline that is "no corrosion, mild corrosion, moderate 

corrosion, and serious corrosion" under laboratory 

conditions. The inputs to the model used in this study 

are parameters from ultrasonic sensors and magnetic 

leakage sensors. The training data in this study were 

obtained from the experimental setup [29]. The number 

of datapoints is less. Therefore, this model faced the 

problem of overfitting.  

Pipe failure pressure and burst pressure are 

significant in most reliability work. The limit state 

function depends on the pipe's failure pressure. ANN 

has also been successfully applied to predict the failure 

and burst pressure of corroded oil and gas pipelines.  

Silva, Guerreiro et al. [37] predicted the failure 

pressure of pipes with interacting defects using ANN. 

In this study, FEM was used to generate the dataset. 

The inputs considered in the model were the relation 

between the defect depth and the pipe wall thickness 

and dimensionless circumferential spacing. The output 

is the relative pipe pressure capacity. The results were 

compared with the DNV-RP-F101. This model 

successfully associated the corrosion defect depth and 

length with the failure pressure [37].  

Xu, Li et al. [38] used ANN to predict the burst 

pressure of API X-80 pipe. The model inputs were the 

ratio of defect length to pipe thickness, the ratio of 

defect depth to thickness, dimensionless longitudinal 

spacing, dimensional circumferential spacing, and the 

model's output was failure pressure. The study found 

that the model is capable of predicting failure pressure 

from the interacting pipe defects. The validation of the 

ANN model was done with the experiment [30]. 

Chin, Arumugam [39] predicted failure pressure 

subjected to internal pressure in 2020 by using ANN. 

The dataset was obtained from the full-scale burst 

pressure tests of API 5L X42 to X100 collected from 

various literature. The developed model was further 

validated with finite element modeling and a full-scale 

burst pressure test. This model was also used for the 

failure trend analysis of pipes with varied defect depths 

and lengths, which indicated that the defect depth is 

directly proportional to the pipe's failure. The model's 

inputs were the pipe's true ultimate strength, nominal 

diameter, nominal thickness, corrosion defect depth, 

and length [31]. 

Luo, Hu et al. [40] used Support Vector Machine 

(SVM) to predict the corrosion rate in offshore natural 

gas pipes. The inputs considered in the study were 

angle, pressure, deposition rate, the density of the 

liquid, the density of the gas, liquid velocity, liquid 

hold up, pH value, surface tension, flow regime, fluid 

temperature, superficial velocity of gas, heat transfer 

from inner wall pipe to fluid, inner wall surface 

temperature, heat transfer coefficient of the inner wall, 

the thermal conductivity of gas phase, gas maximum 

wall shear stress, liquid, and maximum wall shear 

stress. The author compared the results with the BP 

network and multivariable regression models, and after 

analyzing the results, SVM gave better prediction 

results [32]. 

Lee, Rajkumar et al.'s [41] applied classification 

approach by usin Euclidean-SVM and the MATLAB 

tool to predict the failure of oil and gas pipelines with 

long-range ultrasonic transducers (LRUT). The 

Euclidean-SVM performed better than the conventional 

SVM to classify corrosion defects when using LRUT in 

terms of accuracy. Also, the need for continuous 

modification and tuning of kernel function is 

eliminated in Euclidean-SVM, which makes it less 

computationally complex  [33].  

Ossai [42] predicted corrosion defect depth of aging 

pipelines using a Feed-forward Neural Network 

(FFNN) with optimized weights by Particle Swarm 

Optimization (PSO) method, Deep Neural Network 

(DNN) and Gradient Boost Method (GBM) approach. 

In this study, the model inputs considered are 

temperature, CO2 partial pressure, pH, sulfate ion 

concentration, chloride ion concentration, iron content, 

total alkalinity, operating pressure, calcium 

concentration, basic sediment of water, a million cubic 

feet per day of gas, the barrel of oil production per day, 

and the barrel of water production per day. According 

to the experts, the model can be used for prognostic 

purposes [42]. 

Bastian, Jaspreeth et al. [43] used a deep learning 

model based on a convolutional neural network to 

predict the level of corrosion in oil and gas pipelines. 

The input of the model was the image dataset collected 

from oil and gas pipelines. The main benefit of using 
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vision-based input is that operations can continue 

without stoppage [34].    

 

2.1. Analysis and Discussion  

The literature review found that machine learning is 

of great interest for researchers to model corroded oil 

and gas pipeline reliability. Despite the high rate of 

success in modeling, the majority of models are still 

reliably conservative and lack the capability of 

generalization. This issue can be solved by using 

different types of data sources to build the input data 

set for the model by developing the deep learning-

based model for better accuracy and realistic modeling 

output. And still deep learning applications have to be 

implemented with more versions and data.  

 

3. Material and Methods 
The proposed model in this study is shown in Fig. 2, 

with the methodology consisting of two main parts, the 

data generation part and developing the deep learning 

model. The first part is mainly focused on the coupling 

of the physical-based modeling with reliability analysis 

to predict the probability of failure (POF). The second 

part is developing and optimizing the deep learning 

model. The steps to achieve the proposed model in the 

section below are shown in detail. This study focuses 

on the development of deep learning models, which is 

why the data generation part is not discussed in detail.  

  

3.1. Physical-Based Modeling  

Finite element analysis (FEA) is considered to be 

the accepted approach for obtaining the important 

information in many engineering areas, such as residual 

stresses and corrosion modeling [35]. Finite element 

analysis will be used in this study using COMSOL [36] 

software for obtaining the limit-state function. 

Pitting—considered as the precursor to stress corrosion 

cracking—and the cracking mechanism will be solved 

by getting the stress corrosion cracking results.  

 

3.2. Boundary Conditions  

 
Table 1 Boundary condition for the pipe studied 

Parameter Value 

Pipeline Corban steel 

Pipe outer diameter 508 mm 

Pipe wall thickness 9.5 mm 

Forces Residual stresses, soil 

pressure, operating 

pressure 

 

3.3. Mechanical Model  

This section shows the process of determining the 

strength of a pipeline. To achieve this goal, various 

standards have been proposed, such as DNV RPF, 

SHELL, or ASME B31G. The mentioned codes will be 

used to evaluate the strength of the corroded pipeline 

and subsequently to determine the failure pressure.   

 

3.4. Reliability Analysis  

In this section, pipeline reliability will be analyzed 

in terms of probability of failure (POF). The 

information generated from the FEA model will be 

used for the limit-state function g(x). Then, by using a 

numerical model for reliability analysis—such as 

FORM, SORM, or a Monte Carlo simulation—the 

probability of failure will be predicted.  

 

3.5. Limit State Function  

Limit stat function is considered to be the security 

border, which is conveniently defined by the difference 

between the pipe pressure resistance and the applied 

pressure,  

,                       (1) 

where  is the realization of the random variables of the 

pipe. This margin is defined such that  

represents safety and  shows the failure of the 

pipe. 

   

3.6. Probability of Failure 

For predicting the probability of failure in this 

study, we will use RELIASOFT Weibul software:   

                      (2) 

where N is the total number of experiments and 

 is the number of experiments that lead to 

failure. A summary of input data used in the reliability 

assessment is given in Table 2.  

 
Table 2 Probability distributions of oil and gas pipeline 

Variable Probability 

distribution 

Operating pressure Normal 

Yield strength Normal 

Tensile strength Normal 

Corrosion defect depth Normal 

Corrosion defect length Normal 

Crack growth To be defined 

Nominal wall thickness Fixed 

Outside diameter Fixed 

 

3.7. Proposed Machine Learning Model 

In this research, the purpose is to propose the 

machine learning-based model for predicting the 

probability of failure for corroded oil and gas pipelines. 

From the literature survey during gap finding, it has 

been found that machine learning has been used 

effectively for the reliability prediction of corroded 

pipelines but still advance machine learning and 

particularly deep learning has not been utilized at a 

satisfactory level based on the author of this paper. 

Therefore, in this research, the author has proposed 

deep learning models, such as Long Term Short Term 

Memory (LSTM) and Physics Informed Deep Neural 

Networks (PINN), for the probability of failure 

predictions. The development of the model will be 

carried out in future work. 
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Fig. 2 Proposed model for the research 

 

4. Expected Results of the Model and 

Implications 
The expected outcome of the proposed model is as 

follows:  

● The model can predict the probability of failure 

without extensive simulations. 

● The model can be used to consider multiple 

influential factors at a time.  

● The accuracy of the model prediction can be 

higher than the existing approaches.  

• There will be no need to do physical and 

complex modeling after the successful development of 

the model.  

 

5. Conclusion and Future Work  
 

5.1. Conclusion  

Stress corrosion cracking in oil and gas pipelines is 

considered one of the major causes of failure. Its 

complex nature due to the combined effect of stresses 

and corrosion makes modeling of reliability more 

difficult. Currently, traditional modeling approaches 

are not capable of modeling the reliability of the 

pipelines subjected to stress corrosion cracking. After a 

thorough literature survey, it has been found that 

machine learning methods are the best modeling tool to 

model the reliability of such complex systems. In this 

research, the advantages of deep learning over these 

drawbacks have been identified and proposed in the 

deep learning-based reliability model for oil and gas 

pipelines. The dataset for stress corrosion cracking 

parameters will be acquired through simulations using 

finite element and first-order reliability methods and 

published literature data. After validation of the dataset, 

the model will be developed. The proposed model will 

be able to predict the reliability of the oil and gas 

pipelines in terms of probability of failure without 

performing the traditional time-consuming and 

complex modeling.  

  

5.2. Future Direction 

The model proposed in this study will be 

implemented by using different versions of deep 

learning and predict the probability of failure in oil and 

gas pipelines subjected to corrosion. Upon successful 

validation of the model, the model will be further used 

for maintenance planning decision making.  
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