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Abstract: Sea horizon line (SHL) detection is the first step in maritime image processing. It is aimed at object 

detection, navigation of autonomous aerial and sea surface vehicles, and distance estimation. Many methods have been 

proposed to detect SHL, however, their focus remains on SHL detection in calm sea conditions. For this reason, this 

study is designed to fill this gap and investigate an efficient method to detect a sea horizon line under rough sea 

conditions. A novel color clustering and least-squares regression-based method is proposed to solve the issue. 

Minimizing computational cost, our method identifies the candidate region of interest (CROI) from grayscale image 

ROIs by analyzing the modality of its pixel intensity histogram. It then applies k-mean clustering to highlight potential 

sea-sky regions. The regional boundary pixel coordinates are used to construct a horizon line by applying the least-

squares regression method. The results of the proposed method were compared to the Canny Edge and Hough 

Transform (CEHT) method. The gale state sea images were used to test the efficiency of both methods, correctly 

detecting the starting and ending coordinates of a horizon line and its slope. The results highlight the superiority of the 

proposed method over the CEHT method. On average, the proposed method identified the horizon line within one 

degree of error as opposed to CEHT method with the average of five degrees. In half of the images, the error in 

detecting the horizon starting and ending coordinates for the proposed method was within five or fewer pixels. The 

overall results show the superiority of the proposed method over the CEHT method in rough sea conditions. The 

novelty of this study is two-fold. Firstly, it is a pioneering study that proposes a novel method to detect SHL under 

rough sea conditions. Secondly, the proposed method yielded superior SHL detection results compared to its peers. 

Keywords: Sea Horizon Line Detection, Rough Sea Conditions, Candidate Region of Interest, Color Clustering, 

Least Squares Regression. 

 

一种使用新的颜色聚类和最小二乘回归方法的海平面视线检测 

 

摘要：海平面线（SHL）检测是海上图像处理的第一步。它的目标是物体检测，自动驾驶的

空中和海面车辆的导航以及距离估计。已经提出了许多检测 SHL 的方法，然而，它们的重点仍

然是在平静海况下的 SHL 检测。因此，本研究旨在填补这一空白，并研究一种在恶劣海况下检

测海平面线的有效方法。提出了一种新的基于颜色聚类和最小二乘回归的方法来解决该问题。通

过最小化计算成本，我们的方法通过分析像素强度直方图的模态，从灰度图像投资回报率中识别

出感兴趣的候选区域（投资回报率）。然后，它应用 k 均值聚类来突出潜在的海天区域。通过应

用最小二乘回归方法，区域边界像素坐标用于构建视线。将该方法的结果与坎尼边缘和霍夫变换

（中国电子科技大学）方法进行了比较。大风州海洋图像用于测试这两种方法的效率，正确检测
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地平线的起点和终点及其坡度。结果突出了所提出的方法优于中国电子科技大学方法的优越性。

平均而言，与中国电子科技大学方法（平均 5 度）相比，所提出的方法可以将误差范围确定在 1

个误差范围内。在一半的图像中，为所提出的方法检测水平起点和终点的误差在五个或更少的像

素以内。总体结果表明，该方法在波涛汹涌的海面条件下优于中国电子科技大学方法。这项研究

的新颖性是双重的。首先，这是一项开创性研究，提出了一种在恶劣海况下检测 SHL 的新方法。

其次，与同类方法相比，该方法产生了更好的 SHL 检测结果. 

关键词：海平面线检测，恶劣海况，候选候选区域，颜色聚类，最小二乘回归 

 
 

1. Introduction  
A sea horizon line (SHL) is a low-level geometric 

feature in a maritime image that bifurcates the sky and 

sea regions. By doing so, an area under investigation is 

isolated, which consequently reduces the computation 

cost associated with any further computer vision or 

machine learning task. For such reasons, horizon line 

detection is usually the first step before addressing issues 

such as object detection and tracking [1], navigation and 

collision avoidance of autonomous aerial vehicles [2], [3], 

steering sea surface vehicles [4], and distance estimation 

for ships [5]. 

Under ideal weather conditions, and in an uncluttered 

maritime scene, an SHL is easily identifiable as the 

longest and most prominent linear feature. However, in 

rough sea state scenarios, the presence of high amplitude 

waves, foam, and water spray may obscure the sea 

horizon line. In this case, SHL may not be the longest 

and prominent linear feature in the scene. Identification 

of SHL in such a situation becomes an interesting and 

challenging problem in the domain of computer vision. 

Many sea horizon line detection methods have been 

proposed in literature. The predominant methods can be 

divided into three major categories, i.e., projection-based, 

statistical-analysis-based, and hybrid methods. 

The most commonly used method is projection-based. 

The method assumes that the horizon line is the most 

noticeable linear feature in a maritime image. Thus, it 

attempts to find the prominent linear features by applying 

edge detection and linear feature transform methods [6], 

[7]. Solutions developed using the projection-based 

method can be implemented either with 1D or 2D edge 

detection [4]. They can then apply suitable line detection 

algorithms such as the least-squares regression method, 

Hough Transform or Radon Transform, to finally identify 

the horizon line. However, the presence of other robust 

linear features induced by wake, water surface color, and 

floating vegetation may increase the possibility of 

identifying a false linear feature as a candidate horizon 

line. Additionally, in rough sea conditions, the horizon 

line may not be the most prominent linear feature; hence 

the method may fail in such situations.  Moreover, line 

detection algorithms' high computational complexity is a 

bottle-neck for projection-based methods [4]. 

As an alternative, statistical methods have been 

applied to detect terrestrial/sea horizon line. This 

approach assumes that the intensity distribution of the sea 

and sky region is statistically separable, and an intensity 

variation is present along the horizon. Based on RGB 

pixel grouping into the sky and sea region, a horizon line, 

in this case, will have a minimum variance from distinct 

means of sky and sea regions [6], [7]. However, in rough 

sea state conditions, as depicted in Fig. 1, grouping the 

sea or sky regions based on RGB values of pixels 

becomes challenging due to foam and water spray, which 

seamlessly blends in with the background. 

 
Fig. 1 Rough sea condition (spray blends in with clouds) 

 

The third most commonly used method is based on 

the hybrid configuration that couples two or more 

methods to enhance the proposed solution's 

generalization ability. For example, machine learning 

methods have been conjugated with edge detection and 

other techniques to identify the horizon line. An 

approach based on YCrCb color-based pixel-level binary 

classification using Support Vector Machine (SVM) and 

then applying the Hough Transform to the segmented 
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image to find the horizon line is one example of a hybrid 

horizon detection method [3]. A similar method applies 

SVM to classify potential horizon line edges obtained by 

the Canny Edge detection. It then applies dynamic 

programming to identify the horizon line [10]. An 

extension of this method is segmenting each pixel of an 

edge map into a horizon and non-horizon semantic 

category and then applying Convolutional Neural 

Networks (CNN) to identify the edge pixels belonging to 

the potential sea horizon line [11]. However, these 

approaches' dependency on the edge map makes them 

vulnerable to degraded performance under rough sea 

conditions, where linear features are hard to detect. 

The rough sea conditions exhibit challenges such as 

smooth color intensity change across the sea-sky region, 

and occlusion of the horizon line by high amplitude 

waves, spray, and foam. Due to these conditions, robust 

linear features are mostly absent in the scene, affecting 

the performance of a projection-based horizon line 

detection method. Moreover, any hybrid method which is 

based on an edge map is also subject to degraded 

performance. Similarly, statistical analysis near the 

horizon may fail due to smooth color intensity change. 

In this paper, we address the issue of detecting the 

horizon line under rough sea conditions. In such a 

scenario, we have assumed that the sea horizon line is 

generally not continuous, and as seen in Fig. 1, it may be 

obscured by waves, spray, and foam in some regions. 

Thus, finding the candidate region in which the horizon 

line is noticeable becomes an essential step in our 

methodology. Once that candidate region is identified, a 

partial or full reference of the horizon line can be 

detected. For this purpose, a binary color clustering 

technique can be applied. This will segregate the 

potential sea-sky regions and consequently provides 

boundary values of the regions. Theoretically, these 

values can construct a line equation, which subsequently 

can draw a candidate horizon line. For performance 

evaluation, our proposed method's results are compared 

to the Canny Edge and Hough Transform (CEHT) based 

method. To the best of our knowledge, detecting the 

horizon line in rough sea conditions is yet to be 

addressed, and this study is the first step towards solving 

this issue.  

The rest of the paper is divided into the following 

sections. Section1 discusses our proposed methodology 

in detail. The data set, ground truth marking, and 

computational environment are discussed in section 2. 

Later, section 3 gives details on our proposed and CEHT 

based experiment and their parameters. Section 4 

describes the method used for comparing the results of 

two experiments. In section 5, we have discussed the 

results, and subsequently, the conclusion and future 

directions are given in section 6. Finally, section 7 

presents acknowledgment. 

 

2. Research Methodology 
Our proposed rough sea horizon line detection 

(RSHLD) methodology is presented in Fig. 2. It can be 

divided into four stages. The following subsection 

explains each stage in detail. 

 
Fig. 2 Rough sea horizon line detection (RSHLD) methodology 

 

2.1. Horizon Line Detection in Rough Sea 

Conditions 

 

2.1.1. Image Preprocessing 

In the first stage, the input image is resized to 50% of 

its original size while maintaining the aspect ratio. In 

their literature review, Hashmani et al. [8] reported, from 

multiple studies, that identifying the sea horizon line in a 
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color image can increase the computational cost of the 

method; thus, the resized image is then converted into a 

grayscale image. This minimizes the computational cost 

while maintaining the quality of the image at almost at 

the same level as a color image [8].  

 

2.1.2. Candidate Region of Interest Identification 

The identification of a candidate region of interest 

(CROI) can significantly reduce the computational cost 

of the method as, now, the region under investigation is 

smaller than the original image. Thus, in the second stage, 

the resized grayscale image is horizontally divided into N 

regions of interest (ROIs). Here, the approach adopted by 

Jeong et al. [9] is considered and 50% overlapping ROIs 

are generated. The starting and ending pixels for ROIs 

are computed using equations (1) and (2). 

          (1) 

           (2) 

Here, is the starting pixel and  is the 

ending pixel of N
th 

region of interest. is the full step 

size, calculated by dividing the image height by 5 and  

is half step size, calculated by dividing  by 2. Using 

this scheme, a total of nine ROIs can be generated for an 

image.  

In rough sea conditions, the sky region generally 

exhibits a nearly uniform color distribution. Based on 

this observation, a CROI identification method is 

proposed. This method uses a gray image pixel intensity 

histogram to analyze the distribution of pixels in a given 

ROI. In the case of the presence of only the sky region, a 

unimodal histogram is generated. However, once the sea 

region is also present in the ROI, a bimodal distribution 

is presented in the histogram. This modality change can 

isolate the ROI in which both sky and sea regions are 

present. This isolated ROI is considered our CROI. 

In the third stage, a binary k-means color clustering is 

applied to the CROI to highlight sky and sea regions. For 

this purpose, the maximum number of iterations is set to 

100, and the desired accuracy is 0.2. The iteration is 

stopped when either of the criteria mentioned above is 

met. The initial cluster center is randomly picked. Since 

the CROI is a small portion of a resized grayscale image, 

the computational cost of the k-means clustering is 

minimal. The creation of two-color clusters provides the 

pixel level information for two distinct regions. The 

change of pixel color in the vertical direction indicates 

the boundary of the regions. Based on this information, 

all such boundary pixel coordinates are identified.  

The sea horizon line in rough sea conditions generally 

does not exhibit linear characteristics. In the fourth and 

the final stage, the coordinates of boundary pixels are 

used to construct the candidate sea horizon line equation 

by applying the least-squares regression method. The 

steps to generate the equation are presented in equations 

(3-7). 

                          (3) 

                          (4) 

            (5) 

             (6) 

             (7) 

Here and are the means of x and y coordinate 

values of boundary pixels,  is the slope, and  is the y-

intercept. At this point, the candidate horizon line is 

generated by using equation (7) for solving it for the 

value of x. For mapping the horizon line on the original 

image, its coordinates are re-calculated by upscaling it 

with the image resize factor. The methodology at this 

stage generates the original image with the candidate sea 

horizon line marked on it. The algorithm of our proposed 

methodology is presented below. 

 
Algorithm 1: Rough Sea Horizon Line Detection 

Input : rough sea image, RS 

Output : rough sea horizon line, RSHL 

   

Step 1 : SD ← downsize RS to 50% 

Step 2 : GSD ← convert SD to grayscale 

Step 3 : ∑ROI← generate a region of interest for GSD 

Step 4 : CROI ← identify a candidate region of interest 

from ∑ROI 

Step 5 : apply binary k-mean clustering on CROI 

C1 ← color cluster 1 

C2 ← color cluster 2 

Step 6 : ∑PB ← identify color clusterC1, C2 boundary 

pixels   

Step 7 : HLEQU ← apply the least-squares regression 

method to generate a line equation using ∑PB 

Step 8 : HL ← solve HLEQU for x coordinate values of 

SD 

Step 9 : RSHL ← upsize the HL by 50% 

Step 10 : generate rough sea horizon line RSHL image 

 

2.2. Experimental Setup 

As discussed earlier, the proposed method aims to 

detect the horizon line in rough sea conditions. Thus, we 

have considered a Beaufort wind scale level 8 sea 

conditions for this problem. The Beaufort wind scale is 

an empirical scale introduced by Admiral Beaufort to 

report the sea conditions corresponding to wind speed. It 

has been recommended for international use since 1874 

[10].   

 

2.2.1. Data Set 

Since none of the available maritime image data sets 

cover rough sea state conditions [8], we have selected a 
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public video source for creation of the required data set 

[11]. The video consists of 3,670 frames at a resolution 

of 1280 x 720 pixels. It was recorded while transiting 

from Seattle to San Diego, USA, from the main deck of 

the starboard side of a scientific research vessel. During 

the transit, a Beaufort 10 scale sea state was reported. 

However, by comparing a sample frame from the video 

with a standard reference [12], the actual Beaufort state 

was found to be closer to state 8. At this state, the wind 

speed was between 32 to 37 kn per hour and the Beaufort 

scale description of this state is "gale" [10]. For the 

interest of the reader, the comparative images are 

presented in Fig. 3. 

 
(a) Actual video frame 

 

 
(b) Beaufort scale 7 sea state reference 

 

 
(c) Beaufort scale 8 sea state reference 

Fig. 3 Manual sea state identification using standard reference images 

 

From the source video, 3 frames per second were 

extracted and saved in portable network graphics (PNG) 

format. The resolution of the frames was 1280 x 720 

pixels with a 24-bit depth. The frames were named in a 

sequence starting from 0 with a step size of 10 (i.e., 

frame 0, frame 10, frame 20). In total, 367 frames were 

extracted. These frames cover different situational 

categories including a visible horizon line, partially 

occluded horizon due to high-amplitude waves, water 

spray, foam, irregular horizon line, partial and full blur 

images, thus making it a challenging data set. Some 

sample images from the generated data set are presented 

in Fig. 4. 

 
(a) Visible horizon 

 

 
(b) Partially visible horizon 

 

 
(c) Water spray 

 

 
(d) Foam 
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(e) Irregular horizon 

 

 
(f) Partial blur 

Fig. 4 Different conditions of the sea present in the data set 

 

2.3. Ground Truth Marking 

Ground truth marking is essential for evaluating the 

performance of a method. For this reason, the presence of 

the horizon line in all 367 images was manually observed. 

It was found that in 8 images, the horizon line was not 

visible due to dominating water spray. Thus 359 images 

were finally selected and manually marked by identifying 

the starting and ending points of the visible horizon line. 

In all images, the x-axis coordinates were 0 and 1279; 

however, the values for y-axis coordinates changed from 

frame to frame. The ground truth horizon lines (GTHLs) 

were then drawn using those points. In the later stage, for 

all GTHLs, slope angles were calculated in 

degrees. These values were later used to gauge the 

efficiency of the results generated by our experiment. 

Table 1 presents the generated data set statistics. 

 
Table 1 Data set statistics 

(a) Frame Statistics 

Total Number of Frames 359 

Frame Resolution 1280 x 720 pixels 

Bit Depth 24 

(b) Ground Truth Statistics 

 Starting 

Pixel 

(x0 , y0) 

Ending 

Pixel 

(xn-1 , yn-1) 

Sangle(Degree) 

Minimum (0,130) (1279,131) -8.62 

Maximum (0,488) (1279,427) 9.19 

Mean of y 303 291 - 

Deviation of y 64 65 - 

 

2.4. Computational Environment  

Python has been widely used in image processing 

applications. Its ease of use makes it an ideal choice for 

the implementation of our proposed methodology. For 

image processing, the OpenCV library was used. The 

code was written on Jupyter Notebook and executed on 

an Intel i5-4200U processor running a 64-bit operating 

system. 

 

3. Experiment 
For the comparative performance analysis, the 

experiment is divided into two parts. The first part is 

based on our proposed methodology, and the second 

partis conducted using the CEHT based horizon line 

detection method. All 359 images were resized to 50% of 

their original dimensions for both experiments while 

maintaining their aspect ratio. Since from this point 

onwards, the experiments followed two different flows. 

Thus, they are separately discussed in the following two 

sub-sections.  

 

3.1 Proposed Rough Sea Horizon Line Detection 

(RSHLD) Algorithm based Experiment 

The resized images are converted into grayscale, and 

for every image, the coordinated of ROIs are identified 

using equations (1) and (2). The results of ROI 

generation are presented in Fig. 5.  

 
(a) Resized gray scale image 

 

 
(b) ROI 1 

 

 
(c) ROI 2 

 

 
(d) ROI 3 

 

 
(e) ROI 4 
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(f) ROI 5 

 

 
(g) ROI 6 

 

 
(h) ROI 7 

 

 
(i) ROI 8 

 

 
(j) ROI 9 

Fig. 5 Region of interest generation 

 

Once the ROIs are generated, the proposed histogram 

modality analysis is performed, and a candidate ROI is 

identified. The results of CROI identification are 

presented in Fig. 6. 

A two centers k-means clustering is then applied to 

CROI to group the pixels which belong to sea and sky 

regions. Later, the identified color clusters' values are 

used to identify the boundary between the two clusters. 

For this purpose, a pixel-by-pixel vertical scan is 

performed across the x-axis. The coordinates of change 

in a pixel's color value are marked as boundary values. 

These boundary values are used to generate the horizon 

line equation using the least-squares regression method. 

Once the horizon line equation is formed, a horizon line 

is constructed on the original image by solving it for the 

value of x and resizing it as per the original image’s 

dimensions. Fig. 7 exhibits the outcomes of each step 

discussed above.  

 

 
(a) Candidate region of interest 

 

 
(b) Binary color clustering 

 

 
(c) Boundary pixels identification (white) 

 

 
(d) Detected horizon line (green) 

Fig. 7 Rough sea horizon line detection using the proposed RSHLD 

method 

 

3.2 Canny Edge and Hough Transform (CEHT) 

based Horizon Line Detection Experiment 

Canny Edge and Hough Transform is a well-known 

method for horizon line detection [9],[13],[14]. For this 
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reason, it is chosen for the performance analysis of the 

proposed method. To implement this method, a median 

filter of size 5x5 is applied to the resized image. This 

filter effectively removes the noise from the image while 

preserving the edge information [15]. The resultant 

image is then converted into a grayscale image, and ROIs 

are generated using equations (1) and (2). The proposed 

histogram modality analysis is then applied to identify 

CROI. The Canny Edge operator is then applied to CROI. 

The lower and upper thresholds for the Canny Edge 

operator are calculated using proposed equations (8-10).  

            (8) 

           (9) 

         (10) 

Here,  is the average of median and mean 

values of grayscale image pixels ,  is a control 

variable from 0 to 1.  is the lower, and   is the 

upper threshold for the Canny edge operator. Once the 

edges are detected, probabilistic Hough Transform is 

applied to the edge map, and the longest line found is 

selected as the candidate horizon line.  

Since the Hough Transform returns the line's starting 

and ending points, a line equation is derived from this 

information. This line equation is finally used to draw the 

horizon line on the original image by adjusting it as per 

new coordinates. The outcomes of this experiment are 

presented in Fig. 8. 

 
(a) Candidate region of interest 

 

 
(b) Canny edge detection 

 

 
(c) Hough transform line (white) 

 

 
(d) Detected horizon line (blue) 

Fig. 8. Rough sea horizon line detection using CEHT method 

 

3.3. Comparison Method 

The results of two experiments are compared using 

ground truth horizon line (GTHL) values described in 

Table 1. Here, two parameters are considered for 

comparison. The first parameter (i.e., horizon starting 

and ending coordinates) is used to compare the RSHLD 

and CEHT method's pixel-level accuracy. The second 

parameter (i.e., horizon line slope) is used to compare the 

accuracy of finding the horizon line's correct angle by 

both methods. 
 

4. Results and Discussion 
Two experiments for rough sea horizon line detection 

are designed, performed, and their results are generated. 

In this section, we discuss those results in detail. 

The method of finding a candidate region of interest 

requires that an image is first divided into N equal size of 

regions of interest. We find that generating a 50% 

overlapping ROI helps minimize the occurrence of the 

sea-sky region at the very bottom or top section of an 

ROI and helps capture different sea-sky regions. Fig. 5 

(d) is one such example. This overlapping technique is 

found to be effectively capturing the significant presence 

of both regions in 89% of cases. However, there are few 

examples, such as Fig. 9, in which a small region of the 

sea is visible at the boundary of ROI. To some extent, we 

find that few such ROIs affected the performance of 

significant CROI identification in a later stage. 

 
 

As mentioned in Table 2, the proposed CROI 

identification method (as depicted in Fig. 6) shows 

promising results, and out of 359 frames, CROI was 

identified in 345 frames.  A visual analysis of these 

CROIs is conducted, and it is found that out of 345 

CROIs, 337 CROIs successfully captured significant sea-

sky regions. This shows an overall efficiency of 94% in 

detecting correct CROIs. It is found that ROI in which a 

significant sea-sky region is not present, the dominant 

cloud region caused a bimodal nature of its pixel 

intensity histogram; thus, the method identified the 

wrong CROI. One such example is presented in Fig. 10. 
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Table 2: CROI and k-mean color clustering results 

Total 

Frames 

Selected 

Frames 

CROI Identified Correct CROI 

Identified 

Binary Color Clusters 

Identified from CROI 

Correct Binary Color 

Clusters Identified 

367 359 345 337 345 310 

 Accuracy 96% 94% 100% 86% 

 

Hence, it is recommended that the histogram of the 

current plus 1 ROI may also be examined to select the 

correct CROI. 

The binary k-mean clustering is used to assign the 

pixels to two groups, i.e., sea and sky. Since it is applied 

to CROI, a small portion of a downsized image, 

computation cost remains low. As presented in Table 2, 

all 345 CROIs were processed, and it is found that 86% 

of identified clusters correctly bifurcated the two regions. 

The presence of a small sea-region and blur caused by 

the water spray contributed to the regions' incorrect color 

clustering.  

The coordinates of boundary pixels of two regions are 

used to construct the candidate horizon line equation by 

applying the least-squares regression method. As 

described in Table 3, our proposed method is able to 

identify lines in 335 frames. However, in 87% of the 

frames (i.e., 312 frames), the line had all or some GTHL 

properties. It is found that wrong color clustering was a 

major factor in the misidentification of the horizon line in 

the remaining 13% of the frames (i.e., 23 frames). 

Despite this issue, overall, the mean difference between 

GTHL’s slope angle and the proposed RSHLD horizon 

lines’ slope angle is as low as 1 degree with a standard 

deviation of 1.3 degrees, which is a satisfactory result 

given that the CROI and color clustering performance is 

affected by the complexity of rough sea conditions. The 

mean error of detecting the correct starting and ending 

point of the horizon line is 14 and 20 pixels, respectively. 

It is also encouraging that the proposed method can 

detect the horizon line in most challenging rough sea 

conditions as well. Fig. 11 depicts some of these results. 

 
(a) Ground truth (frame 2490) 

 

 
(b) Detected horizon line (frame 2490) 
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(c) Ground truth (frame 3570) 

 

 
(d) Detected horizon line (frame 3570) 

 

 
(e) Ground truth (frame 3530) 

 

 
(f) Detected horizon line (frame 3530) 

Fig. 11 Ground truth (a, c, e), and detected horizon line result using 

RSHLD method (b, d, f) 

 

The results of our proposed method are compared 

with the CEHT-based method. It is observed that in 

rough sea conditions, edge-based line detection is 

generally less effective in determining the sea horizon 

line. As presented in Table 3, out of 359 frames, the 

Canny operator is able to detect edges in 124 frames 

which is a 34.5% success rate. From these 124 frames, 

most horizon lines generated by the Hough Transform 

did not align with the GTHLs. 

 
Table 3 Performance statistics for RSHLD and CEHT based methods in rough sea conditions 

 Line Identified 

(Frames) 

Mean y0 Error 

(Pixels) 

Mean yn-1 Error  

(Pixels) 

Mean Horizon Line Angle 

Error (Degree) 

Horizon Line Angle 

Standard Deviation  

(Degree) 

RSHLD Method 335 14 20 1.0 1.3 

CEHT Method 124 51 70 5.0 4.9 

 

The difference between the mean slope angle of this 

method and GTHLs slope angles is 5.0 degrees with a 

standard deviation of 4.9 degrees. Similarly, the mean 

error of detecting the correct start and endpoint of the 

horizon line is 51 and 70 pixels, respectively. This shows 

the inefficiency of the Canny edge and Hough transform 

(CEHT) based method in detecting the true horizon line 

in the sea horizon line. This could be attributed to the 

absence of strong linear features in rough sea conditions. 

Fig. 12 represents the comparative results of our 

proposed and CEHT method. 

 

(a) 

 

 
(b) 
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Fig. 12 Horizon line detection results of RSHLD (a, b, c, d, e) and 

CEHT (f, g, h, i, j) methods under different rough sea conditions 

 

5. Conclusions and Future Work 

A novel rough-sea-horizon-line detection (RSHLD) 

method based on binary color clustering and least-

squares regression method was proposed, and its results 

were compared to the CEHT-based horizon line detection 

method.  
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Image frames extracted from Beaufort State 8 videos 

were used to test the efficiency of both methods. A 

candidate region of the interest identification method 

based on the modality analysis of a pixel intensity 

histogram was also tested, identifying the correct 

candidate region with an accuracy of 94%.  

It was found that Canny edge detection was not 

effective under rough sea conditions. Out of 359 images, 

it was able to detect edges in only 124 frames. Since 

Canny edge detection is a precursor to Hough transform 

line detection, the generated line results were also 

affected. Compared to ground truth values, the generated 

results had a mean slope angle error of 5 degrees with a 

standard deviation of 4.9 degrees. The Canny edge 

method suffers from a lack of strong linear features in 

rough sea conditions; hence, it detected the start and 

endpoints of the horizon line with a mean error of 50 and 

70 pixels, respectively.  

The proposed method produced better results in rough 

sea conditions and was able to detect a line in 335 frames. 

However, there were cases when the identified line was 

completely unrelated to the ground truth horizon line. 

This could be attributed to misidentified CROI and 

subsequent wrong color clusters. Nevertheless, the 

method generated promising results in complex and 

rough sea conditions. Overall, an average error of 1 

degree with a standard deviation of 1.3 degrees was 

observed as compared to ground truth values. In half of 

the cases, the error in finding the correct start and 

endpoints of the horizon line was five or fewer pixels. In 

the case of an irregular horizon, partial occlusion, and 

blur, promising results were generated by the proposed 

method.  

To the best of our knowledge, this is a pioneer study 

in detecting the horizon line in rough sea conditions, and 

it has produced promising results. The proposed method 

could be used for isolating a target region for maritime 

object detection or as a reference for navigational 

purposes in rough sea conditions. 

Finally, it was observed that the misidentification of 

CROI and wrong color cluster identification played 

major roles in detecting a false horizon line. In the future, 

a more optimized method of selecting CROI could be 

further investigated. In addition to this, other clustering 

methods, such as density-based methods, may be further 

evaluated.  
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