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Abstract: This paper investigates a case study on the short-term forecasting of data from Mahakam with 

emphasis on special days, such as public holidays. Anomalous load conditions occur on different days, such as 

public holidays. These conditions are difficult to model because of their infrequent occurrence and significant 

deviation from standard load. A time series of load demand electricity recorded at hourly intervals contains more 

than one seasonal pattern. There is a great attraction to using a modeling time series method that is able to capture 

triple seasonalities. The triple seasonal ARIMA model has been adapted for this purpose and is competitive for 

modeling load. Herein, we demonstrate the triple seasonal ARIMA is an alternative strategy for providing accurate 

forecasts of electricity load from Kalimantan for planning, operational maintenance, and market-related activities. 

Keywords: electricity, anomalous load, triple seasonal ARIMA, AIC, SBC. 

 

电力负荷异常事件：基于 Mahakam 数据的评估 

 

摘要：本文研究了对 Mahakam 的数据进行短期预测的案例研究，重点是特殊日，例如

公共假期。 异常负载情况发生在不同的日期，例如公共假期。 这些条件很难建模，因为它们

很少出现并且与标准负载有明显的偏差。 以小时为间隔记录的负载需求电的时间序列包含多

个季节性模式。 使用能够捕获三个季节性的建模时间序列方法非常吸引人。 为此，已经修改

了三重季节性有马模型，并且在建模负载方面具有竞争力。 在此，我们演示了三重季节性有

马是为计划，运营维护和市场相关活动提供准确预测加里曼丹电力负荷的一种替代策略。 

关键词：电力，异常负荷，三季度有马，AIC，单板电脑。 

    
 

1. Introduction 
Load forecasting is an important technique for 

obtaining high-accuracy power estimates. Short-term 

load forecasting has been a fundamental to the major 

interests of the electricity industry. In this decade, 

short-term load forecasting has frequently been applied 

by researchers. Traditionally, hourly forecasts with a 

lead time of between one hour and seven days are 

required for scheduling and controlling power systems 

[12]. From the perspective of the systems operators and 

regulatory agencies, they provide a primary source for 

the safe and reliable operation of the system. For 

producers, they are a basic tool for determining optimal 

utilization of generators and power stations, as some 

facilities are more efficient than others. Accurate short-

term forecasts of electricity demand (load) are crucial 

for making informed decisions regarding unit 

commitment, energy transfer scheduling, and load 

frequency control of power systems. An electric utility 

needs to make these operational decisions daily, often 

in real-time, to operate in a safe and efficient manner, 

optimize operational costs, and improve the reliability 

of distribution networks [11]. Moreover, inaccurate 

forecasts can have substantial financial implications on 

energy markets. Electricity demand is often modelled 
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in terms of a weather variable. However, univariate 

methods are frequently considered sufficient for short 

lead times because weather variables tend to change in 

a smooth fashion over short time frames and, thus, will 

be captured in the demand series itself. A variety of 

univariate methods have been used for short-term load 

forecasting. 

Many different methods and models have been 

proposed by researchers using a triple seasonal ARIMA 

time series (Kim et al. [1]; Arora & Taylor [2]; Fidalgo 

& Lopes [3]) or neural network (Lamedica et al. [4]; 

Atiya et al. [10]) for load forecasting including 

anomalous load conditions, such as holidays (Song et 

al. [5]). Further, they use fuzzy linear regression 

methods for load forecasting using a variety of 

approaches, including fuzzy neural computation 

(Srinivasan et al. [7]; Norizan et al. [8]), state space 

model (Dordonnat, et al. [6]), and triple seasonal 

methods for non-anomalous (normal) load forecasting.  

In this paper, we extend the triple seasonal methods 

to include yearly seasonal cycle by a case study using 

data from Mahakam. However, with an eye on 

economy and to find a true AR or MA model for higher 

order selection models, we also consider the 

polynomial of order triple ARIMA, including all lags, 

by looking at the sample autocorrelation, partial 

autocorrelations, and autocorrelation check for white 

noise. Herein, we present a detailed case study using 

data from Mahakam-East Kalimantan, which focuses 

on the short-term forecasting of anomalous loads using 

a range of different modeling approaches. We treat 

each special day as having a specific profile in our 

adaptation of Taylor's system, introduce an additional 

dummy variable into the model to allow greater 

flexibility in accommodating special day effects, and 

model triple seasonality. In addition, a variety of 

different benchmarks are proposed for testing load 

forecasts on special days. We test probability density 

forecasts through regular and special days, in addition 

to generating point forecasts. To the best of our 

knowledge, there is no current research on anomalous 

load density forecasting. 

We start with a presentation of the triple seasonal 

ARIMA model. Then, we discuss the results of this 

triple seasonal ARIMA model in detail. Finally, we 

provide our conclusions based on the forecasting 

evaluation method presented in this study. 

 

2. Methodology 
This methodology, developed by G. E. P. Box and G. 

M. Jenkins [9], approaches a trend and seasonal effects 

in time series data that is unique from the approach 

taken by regression or exponential smoothing. The 

Box–Jenkins methodology begins by determining if the 

time series under consideration is stationary. 

This is a distinguishing feature from general 

seasonal ARIMA models. More broadly, we can write 

the general ARIMA model as follows: 
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If d and D are nonnegative integers, then tZ
 
is a seasonal 
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process with period S if the differenced series 
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For the current study, due to the presence of a triple 

seasonal pattern in the short-term Mahakam-East 

Kalimantan load demand data, which have daily, 

weekly, and yearly seasonal cycles, we developed a 

triple seasonal multiplicative ARIMA model. In this 

section we extend these factors to the general triple 

seasonal ARIMA for modeling anomalous load data 

from Mahakam-East Kalimantan. The formulation for 

this method is presented in the following expressions:
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where 

tZ
 
= the load observed at period t,  

c = constant parameter,  

B = the backward shift operator or lag operator,  

,,,
21 PPp  and 

3P  = AR polynomial functions of 

order p, P1, P2 and P3,  

,,,
21 QQq  and 

3Q   = MA  polynomial 

functions of order q, Q1, Q2 and Q3,  

 ),0(~ 2)(
N

N
t NIDa   = the model errors for 

normal,  

 ),0(~ 2)(
S

S
t NIDa   = the model errors for special 

days, and variances 
2
N and 

2
S , while NID equates 

to a normally- and independently-distributed process.  

The function )( 3S
B and )( 3S

B accommodate 

the yearly seasonal effect for normal days, the function 

)( 3S
B  and  )( 3S

B  accommodate the yearly 

seasonal effect for special days.  

For example, the multiplicative Triple SARIMA 

model is expressed as 1,1,1,1 3211  PPPp and 

differencing is a technique that can also remove 

seasonal components and 

trends

8760,168,24,1,1,1,1 321321  SSSDDDd

0,0,0,0 3211  QQQq . Hence, the model can 

be expressed as Model Triple ARIMA (1,1,0) 

(1,1,0)
24

(1,1,0)
168

(1,1,0)
8760

.
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where 
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For example, the multiplicative Triple SARIMA 

model is expressed as 1,1,1,1 3211  PPPp and 

differencing is a technique that can also remove 

seasonal components and 

trends

8760,168,24,1,1,1,1 321321  SSSDDDd

1,1,1,1 3211  QQQq . Hence, the model can be 

expressed as Model Triple ARIMA (1,1,1) 

(1,1,1)
24

(1,1,1)
168

(1,1,1)
8760

. Consider 

33.0,87.0,004.0,82.0 3211  and 

32.0,86.0,80.0,19.0 3211  with 

variance estimate 219.6865, AIC 285319.1, and SBC 

285378.3, the model can be written as follows:
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For special days the rule-based value 

8760)(3 tS allows load findings from three previous 

unique days to be included, which would be acceptable 

for improving the model's forecast for a specific special 

day.
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3. Data Set 
The data used is the year-hourly load measured in 

Megawatt (MW) from January 01, 2015 to December 

31, 2018. They are gathered from PLN AP2B SISTEM 

KALTIM-Balikpapan, KM. 15 Karang Joang Nort 

Balikpapan, Mahakam East Kalimantan electricity 

utility company, Balikpapan Indonesia. PLN (The 

State-owned electricity company) is one of the most 

well-managed power companies in Indonesia. This 

utility company has powered for decades through the 

transmission, generation, and distribution of electricity. 

The data were divided into sets: Initialization set and 

test set. Fig. 1 plots the initialization set data. It is clear 

from Figs. 1 and 2 that Mahakam-East Kalimantan load 

demand data is non-stationary. 
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Fig. 1 Hourly load for Mahakam from 1 January 2015 to 31 

December 2018 

 

 
Fig. 2 Plot histogram of load electricity and probability plot 

 

4. Results 

Plotting the ACF and PACF of Mahakam-East 

Kalimantan load data in Fig. 3 shows the seasonal 

pattern, which is daily seasonality with length 24. 

Therefore pre-processing data is applied using regular 

and seasonal differencing to convert non-stationary 

load series to stationary load series.  Plotting the ACF 

and PACF after non-seasonal differencing and daily 

seasonal differencing in Fig. 4 indicates another 

seasonal pattern: weekly seasonality with length and (7 

x 24). 
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Fig. 3 Plot ACF and PACF load electricity 
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Fig. 4 Plotting the load demand series after three 

times differencing, which are non-seasonal 

differencing, daily seasonal differencing, weekly, 

yearly seasonal differencing in Fig. 4 indicates that the 

load series is stationary.  In order words, this 

identification step shows that the load data have two 

seasonal periods, which are daily, weekly, and yearly 

seasonality with length (24), (7 x 24), and (52 x 24), 

respectively. 

 

 
 

 
Fig. 4 Plot load electricity with 
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Fig. 1 shows the Mahakam-East Kalimantan load 

demand series for the fortnight in the middle of the 52 

weeks, a within-day seasonal cycle of duration s1 = 24 

periods, and a within-week seasonal cycle of duration 

s2 = (14 x 24) periods. The weekdays show similar 

patterns of demand, whereas Saturday and Sunday have 

different levels and profiles. A visual inspection reveals 

that the mean and variance remain stable. 

Simultaneously, there are some short runs where 

successive observations tend to follow each other for 

very brief durations, suggesting that there is indeed 

some negative autocorrelation as confirmed by the 

sample ACF plot.  

Before the first seasonal data, the ACF plot shows 

that ACF at lag 1 and lag 12 are significantly different 

from zero or are greater than the confidence interval of 

ACF. There are several non-seasonal lags (lag 1, lag 

2,..., lag 48), and the ACF tends to be cut off after lag 

1, whereas PACF diminishes dies down. On the other 

hand, ACF and PACF at seasonal lags (lag 12, lag 24, 

...) tend to cut off after lag 12, lag 24, lag 168, and lag 

8760. Once parameters have been estimated, we check 

on the model's adequacy for the load data series. The 

estimate values of these regular, seasonal, and non-

seasonal parameters of  Model 1 until  Model 6 are 

greater than 2%, with highly significant at alpha less 

than 0.0001 significance level. The theoretical ACF and 

PACF of Eq. 2 are presented in Fig. 2. 

This model also found that all the parameters are 

significant at alpha 0.05 significance level with white 

noise residuals based on Ljung-Box * Q statistic until 

lags 48. This model also gives 10 extreme residual 

values. In terms of the residuals' magnitude, these are 

at 11633th, 11632th, 6305th, 7265th, 3041th, 7456th, 

11651th, 2415th, 11681th, and 12659th observations. 

Similar to the first model, the model residual does not 

satisfy the Normal Distribution. The AIC and the SBC 

of this model are 194259.2 and 194435.3, 

respectively.  

The transformed series still possesses seasonality, 

but the transformation has substantially reduced the 
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skewness in the data. An assumption of Gaussian errors 

would seem to be considerably more appropriate for 

the transformed series.  For model 1, these parameters' 

estimate values are less than ±10% except (AR1,1) and 

(AR1,2). The estimate values of these parameters are 

less than ±10% except MA(1,2).   

 

4.1. Model 1 

The multiplicative Triple SARIMA model is 

expressed as 1,2),12,1(,1 3211  PPPp and 

differencing is a technique that can also be used to 

remove seasonal components and trends with 

8760,168,24,1,1,1,1 321321  SSSDDDd

and 1,1),672,168,1(,1 3211  QQQq  hence the 

model can be expressed as Model Triple ARIMA 

(1,1,1) ([1,12],1,1)
24

(2,1,1)
168

(1,1,1)
8760

. Consider 

33.0,87.0,004.0,82.0 3211  and 

32.0,86.0,80.0,19.0 3211  with 

variance estimate 219.6772, AIC 285320.7, and SBC 

285405.2, the model can be written as follows:
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4.2. Model 2 

The multiplicative Triple SARIMA model is 

expressed as 1,2,2,1 3211  PPPp and 

differencing is a technique that can also remove 

seasonal components and 

trends

8760,168,24,1,1,1,1 321321  SSSDDDd

1,1,1,1 3211  QQQq . Hence, the model can be 

expressed as Model Triple ARIMA (1,1,1) 

(1,1,2)
24

(1,1,2)
168

(1,1,1)
8760

. Consider 

33.0,87.0,004.0,82.0 3211  and 

32.0,86.0,80.0,19.0 3211  with 

variance estimate 223.1565, AIC 285860.4, and SBC 

285902.7, the model can be written as follows:
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4.3. Model 3 

The multiplicative Triple SARIMA model is 

expressed as 1,1],12,1[,1 3211  PPPp and 

differencing is a technique that can also be used to 

remove seasonal components and trends with 

8760,168,24,1,1,1,1 321321  SSSDDDd

and 1,1],672,168,1[,2 3211  QQQq  hence the 

model can be expressed as Model Triple ARIMA 

(1,1,2) ([1,12],1,[1,168,672])
24

(1,1,1)
168

(1,1,1)
8760

. 

Consider the number of observations 34863, with 

01017.0,175.0,7863.0 211   and
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32173.0,02456.0,8075.0,0016.0,856.0,0051.0,95.0 1213211 

 

with variance estimate 219.6772, the number of 

residuals 34667, AIC 285320.7 and SBC 285405.2 the 

model can be written as follows:
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where 
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4.4. Model 4 

The multiplicative Triple SARIMA model is 

expressed as 1,2,2,3 3211  PPPp and 

differencing is a technique that can also remove 

seasonal components and 

trends

8760,168,24,1,1,1,1 321321  SSSDDDd

1,1,2,3 3211  QQQq . Hence, the model can be 

expressed as Model Triple ARIMA (3,1,3) 

(1,1,2)
24

(1,1,2)
168

(1,1,1)
8760

. Consider 

33.0,87.0,004.0,82.0 3211  and 

32.0,86.0,80.0,19.0 3211  with 

variance estimate 2262587, AIC 286341, and SBC 

286400, the model can be written as follows:
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where  
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4.5. Model 5 

The multiplicative Triple SARIMA model is 

expressed as 1,2,2,3 3211  PPPp and 

differencing is a technique that can also remove 

seasonal components and 

trends

8760,168,24,1,1,1,1 321321  SSSDDDd

1,1,2,2 3211  QQQq . Hence, the model can be 

expressed as Model Triple ARIMA 

([1,2,3,4,5,6],1,[1,2,3,4,5,6]) 

(1,1,1)
24

(1,1,1)
168

(1,1,1)
8760

. Consider 

,1.0,41.0,004.1,92.0,79.0,01.1 654321  

and

  

32.0,86.0,80.0,71.0,54.0,08.0,14.0,29.0,35.0 321654321  

 

with variance estimate 219.6865, AIC 285235.7, and SBC 285379.4, the model can be written as follows:
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Forecasting Using Model Triple ARIMA 

([1,2,3,4,5,6],1,[1,2,3,4,5,6]) 

(1,1,1)
24

(1,1,1)
168

(1,1,1)
8760 

The fifth model can be expressed as follows:

Model for variable x 

Period(s) of Differencing    1,24,168,8760 

No mean term in this model. 

 

ARIMA Estimation Optimization Summary 

 

Estimation Method                                     Conditional Least Squares 

Parameters Estimated                                                         17 

Termination Criteria                       Maximum Relative Change in Estimates 

Iteration Stopping Value                                                  0.001 

Criteria Value                                                         6.86E-14 

Maximum Absolute Value of Gradient                                     38902.21 

R-Square Change from Last Iteration                                    0.001243 

Objective Function                                     Sum of Squared Residuals 

Objective Function Value                                                7591639 

Marquardt's Lambda Coefficient                                             1E12 

Numerical Derivative Perturbation Delta                                   0.001 

Iterations                                                                   33 

Warning Message                               Estimates may not have converged. 

 

 

Conditional Least Squares Estimation 

 

Standard                 Approx 

Parameter      Estimate         Error    t Value    Pr > |t|     Lag 

 

MA1,1           0.35065       0.09228       3.80      0.0001       1 

MA1,2           0.29056       0.07215       4.03      <.0001       2 

MA1,3           0.14270       0.06524       2.19      0.0287       3 

MA1,4          -0.08485       0.07688      -1.10      0.2697       4 

MA1,5          -0.54600       0.06849      -7.97      <.0001       5 

MA1,6           0.71776       0.07237       9.92      <.0001       6 

MA2,1           0.01285       0.07024       0.18      0.8549       1 

MA3,1           0.80309     0.0034967     229.67      <.0001      24 

MA4,1           0.86170     0.0028267     304.85      <.0001     168 

MA5,1           0.32067     0.0053343      60.12      <.0001    8760 

AR1,1           1.01522       0.10285       9.87      <.0001       1 

AR1,2          -0.79760       0.12169      -6.55      <.0001       2 

AR1,3           0.92411       0.06676      13.84      <.0001       3 

AR1,4          -1.00483       0.11075      -9.07      <.0001       4 

AR1,5           0.41921       0.10533       3.98      <.0001       5 

AR1,6           0.10115       0.03135       3.23      0.0013       6 

AR2,1          -0.98842     0.0012556    -787.23  <.0001       1 
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The ARIMA Procedure 

 

Variance Estimate      219.0949 

Std Error Estimate     14.80186 

AIC                    285235.7 

SBC                    285379.4 

Number of Residuals       34667 

* AIC and SBC do not include log determinant. 

 

 

Correlations of Parameter Estimates 

 

Parameter    MA1,1     MA1,2     MA1,3     MA1,4     MA1,5     MA1,6 

 

MA1,1         1.000     0.463    -0.571    -0.920    -0.726     0.567 

MA1,2         0.463     1.000     0.335    -0.479    -0.821    -0.383 

MA1,3        -0.571     0.335     1.000     0.547    -0.146    -0.871 

MA1,4        -0.920    -0.479     0.547     1.000     0.654    -0.625 

MA1,5        -0.726    -0.821    -0.146     0.654     1.000     0.029 

MA1,6         0.567    -0.383    -0.871    -0.625     0.029     1.000 

MA2,1        -0.221    -0.650    -0.277     0.224     0.496     0.354 

MA3,1         0.177     0.183    -0.004    -0.153    -0.217    -0.007 

MA4,1        -0.013    -0.018     0.019     0.019    -0.001    -0.007 

MA5,1        -0.004    -0.004    -0.001     0.006     0.006    -0.003 

AR1,1         0.746    -0.030    -0.702    -0.672    -0.313     0.751 

AR1,2        -0.099     0.736     0.645     0.048    -0.408    -0.716 

AR1,3         0.119    -0.394    -0.193    -0.033     0.006     0.410 

AR1,4        -0.590     0.236     0.682     0.596     0.152    -0.850 

AR1,5         0.041    -0.697    -0.600    -0.064     0.444     0.695 

AR1,6         0.277     0.477     0.059    -0.323    -0.383    -0.097 

AR2,1         0.037     0.090     0.059    -0.042    -0.064    -0.059 

 

Correlations of Parameter Estimates 

 

Parameter     MA2,1     MA3,1     MA4,1     MA5,1     AR1,1     AR1,2 

 

MA1,1        -0.221     0.177    -0.013    -0.004     0.746    -0.099 

MA1,2        -0.650     0.183    -0.018    -0.004    -0.030     0.736 

MA1,3        -0.277    -0.004     0.019    -0.001    -0.702     0.645 

MA1,4         0.224    -0.153     0.019     0.006    -0.672     0.048 

MA1,5         0.496    -0.217    -0.001     0.006    -0.313    -0.408 

MA1,6         0.354    -0.007    -0.007    -0.003     0.751    -0.716 

MA2,1         1.000    -0.098    -0.001    -0.006     0.482    -0.867 

MA3,1        -0.098     1.000    -0.231    -0.024     0.094     0.073 

MA4,1        -0.001    -0.231     1.000    -0.041    -0.013    -0.002 

MA5,1        -0.006    -0.024    -0.041     1.000    -0.007     0.003 

AR1,1         0.482     0.094    -0.013    -0.007     1.000    -0.683 

AR1,2        -0.867     0.073    -0.002     0.003    -0.683     1.000 

AR1,3         0.834    -0.003     0.011    -0.008     0.678    -0.795 

AR1,4        -0.606    -0.045     0.007     0.008    -0.945     0.799 

AR1,5         0.912    -0.086    -0.005    -0.005     0.662    -0.976 

 

The SAS System     00:43 Tuesday, February 18, 2003  16 

 

The ARIMA Procedure 

 

Correlations of Parameter Estimates 

 

Parameter     MA2,1     MA3,1     MA4,1     MA5,1     AR1,1     AR1,2 

 

AR1,6        -0.938     0.058     0.004     0.007    -0.395     0.712 

AR2,1        -0.145    -0.100     0.092     0.005    -0.079     0.140 

 

Correlations of Parameter Estimates 

 

Parameter     AR1,3     AR1,4     AR1,5     AR1,6     AR2,1 

 

MA1,1         0.119    -0.590     0.041     0.277     0.037 
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MA1,2        -0.394     0.236    -0.697     0.477     0.090 

MA1,3        -0.193     0.682    -0.600     0.059     0.059 

MA1,4        -0.033     0.596    -0.064    -0.323    -0.042 

MA1,5         0.006     0.152     0.444    -0.383    -0.064 

MA1,6         0.410    -0.850     0.695    -0.097    -0.059 

MA2,1         0.834    -0.606     0.912    -0.938    -0.145 

MA3,1        -0.003    -0.045    -0.086     0.058    -0.100 

MA4,1         0.011     0.007    -0.005     0.004     0.092 

MA5,1        -0.008     0.008    -0.005     0.007     0.005 

AR1,1         0.678    -0.945     0.662    -0.395    -0.079 

AR1,2        -0.795     0.799    -0.976     0.712     0.140 

AR1,3         1.000    -0.764     0.787    -0.824    -0.133 

AR1,4        -0.764     1.000    -0.802     0.466     0.098 

AR1,5         0.787    -0.802     1.000    -0.758    -0.144 

AR1,6        -0.824     0.466    -0.758     1.000     0.163 

AR2,1        -0.133     0.098    -0.144     0.163     1.000 

 

Autoregressive Factors 

 

Factor 1:  1 - 1.01522 B**(1) + 0.7976 B**(2) - 0.92411 B**(3) 

+ 1.00483 B**(4) - 0.41921 B**(5) - 0.10115 B**(6) 

Factor 2:  1 + 0.98842 B**(1) 

Moving Average Factors 

 

Factor 1:  1 - 0.35065 B**(1) - 0.29056 B**(2) - 0.1427 B**(3) 

+ 0.08485 B**(4) + 0.546 B**(5) - 0.71776 B**(6) 

Factor 2:  1 - 0.01285 B**(1) 

Factor 3:  1 - 0.80309 B**(24) 

Factor 4:  1 - 0.8617 B**(168) 

Factor 5:  1 - 0.32067 B**(8760) 

 

Fig. 5 An output SAS Model 5 for Model Triple ARIMA ([1,2,3,4,5,6],1,[1,2,3,4,5,6]) (1,1,1)24(1,1,1)168(1,1,1)8760 

 

We have seen that a simple and widely applicable 

stochastic model for non-stationary time series' 

analysis, containing seasonal component is triple 

seasonal multiplicative Model 5.

 
Fig. 6 Model 5 for ARIMA ([1,2,3,4,5,6],1,[1,2,3,4,5,6]) (1,1,1)24(1,1,1)168(1,1,1)8760 and histogram of residuals appear to be white noise 
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Fig. 7 Residual ACF and PACF Model 5 for ARIMA ([1,2,3,4,5,6],1,[1,2,3,4,5,6]) (1,1,1)24(1,1,1)168(1,1,1)8760 

 

 
Fig. 8 Model 5 for ARIMA ([1,2,3,4,5,6],1,[1,2,3,4,5,6]) (1,1,1)24(1,1,1)168(1,1,1)8760

 

This model's parameters are significant at alpha 5% 

significance level with white noise residuals based on 

Ljung-Box statistic Q* until lags 24. Fig. 5 shows three 

of our diagnostic tools in one display a sequence plot of 

the standardized residuals, the sample ACF of the 

residuals, and p-values for the Ljung-Box test statistic 

for a whole range of values of k from 6 to 48. The 

horizontal dashed line at 5% helps judge the size of the 

p-values. It is seen that the series has significant 

autocorrelation at lags 1 and 24. The estimated 

07611.11,1   with lag 1, 01178.09,1   

with lag 24, 81804.01,3   with lag 168, models 

seem to be caught on the dependence structure of the 

color property time series quite well. The standard error 

on the lag 1 = 02099.0 , lag 24 = 01746.0 , lag 

168 =  0065190.0 , models seem to be caught on 

the color property time series' dependence structure 

quite well. The horizontal dashed line at 5% helps 

judge the size of the p-values. It is seen that the series 

has significant autocorrelation at lags 1 and 24. The 

estimated MA(1,1), MA(2,1),  MA(3,1) models seem 

to be caught on the dependence structure of the color 

property time series quite well. Specifically, the models 

are first-order moving average, or MA(1,2), MA(1,3), 

MA(1,4) models with parameters 0.29056, 0.142, and -

0.084, respectively. Moving average models are always 

weakly stationary because they are finite linear 

combinations of a white noise sequence for which the 

first two moments are time-invariant. 

These two criteria penalize the sum of squared 

residuals for including additional parameters in the 

model. Models that have small values of the AIC or 

SBC are considered good models. Good models are 

obtained by minimizing either the AIC or BIC. Our 

preference is to use SBC. It generally results in a 

smaller and hence simpler model. Its use is consistent 

with the time-honored model-building principle of 

parsimony (all other things being equal, simple models 

are preferred to complex ones. This section presents the 

AIC and SBC results for hourly lead times up to one 

day ahead calculated for the one month post sample 

period of each of the two series of load data. The 

MAPEs of one-step and l-step ahead out-sample 

forecasts using Model Triple ARIMA 

([1,2,3,4,5,6],1,[1,2,3,4,5,6]) 

(1,1,1)
24

(1,1,1)
168

(1,1,1)
8760 

.   
Fig. 8 shows that the one-step-ahead out-sample 

forecasts are not as much influenced by lead times as 

the l-step ahead out-sample forecasts. The out-sample 

forecasts based on l-step ahead are highly influenced 

by lead times, as shown in Table 1. This is because the 

l-step ahead forecasts accumulate the error terms 

resulting in low accuracy in forecasting performances.  

We then illustrate the MAPE of l-step and one-step 

ahead out-sample forecasts of the third model in Fig. 

10; the out-samples of actual data and l-step ahead out-

sample forecasts in Fig. 5 and the out-samples of actual 

data and one-step ahead out-sample forecasts in Fig. 4. 

When one-step ahead out-sample forecasts are 

calculated and compared to l-step ahead out-sample 

forecasts, the MAPE are reduced with the reduction 

percentages of 8,93436%.
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Table 1 The SAS output of the model 

  The ARIMA Procedure Conditional Least Squares Estimation 

Parameter Model 1 Model 2 Model 3 Model 4 Model 5 

Count 168 168 168 168 168 

 N 168 168 168 168 168 

N* 0 0 0 0 0 

CumN  168 168 168 168 168 

Percent 100 100 100 100 100 

CumPct  100 100 100 100 100 

Mean 0.006593 0.006460 0.006463 0.006460 0.006452 
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SE Mean 0.00042 0.000423 0.000423 0.000423 0.000426 

TrMean 0.006101 0.005959 0.005960 0.005959 0.005964 

StDev 0.005453 0.005481 0.005481 0.005481 0.005520 

Variance 0.000030 0.000030 0.000030 0.000030 0.000030 

CoefVar 82.70 84.84 84.81 84.84 85.56 

Sumof Sum 1.107689 1.085225 1.085830 1.085225 1.083909 

Sum of squares 0.012269 0.012026 0.012036 0.012026 0.012082 

Minimum 0.000047 0.000346 0.000233 0.000346 0.000033 

Q1 0.002669 0.002604 0.002624 0.002604 0.002406 

Median 0.004729 0.004826 0.004911 0.004826 0.005090 
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Q3 0.009378 0.009289 0.009061 0.009289 0.008496 

Maximum 0.026740 0.02744 0.027640 0.027445 0.028229 

Range 0.026693 0.027099 0.027406 0.027099 0.028196 

IQR 0.006709 0.006685 0.006438 0.006685 0.006090 

Mode 0 0  0 0 

Skewness 1.38 1.41 1.43 1.41 1.35 

Kurtosis 1.67 1.95 1.99 1.95 1.77 

MSSD 0.000025 0.000023 0.000023 0.000023 0.000023 
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Fig. 9 Load profile for New Year’s Day 

 

 
Fig. 10 Load profile for Christmas Day 
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Fig. 11 Load profile for Eid Adha Day 

 

 
Fig. 12 Load profile for Day 
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Fig. 13 Load profile for Islamic New Year holiday 

 

 
Fig. 14 Load profile for Waisak holiday 

 



18 

 

 

 
Fig. 15 Load profile for Labour Day 

 

 
Fig. 16 Load profile for Bali Hindu holiday 
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Fig. 17 Load profile for Waisak Day 

 

 
Fig. 18 Load profile for International Catholic holiday

 

5. Conclusion 
This paper presented a case study on load 

forecasting for East Kalimantan, emphasizing 

forecasting load on special days using a rule-based 

triple Seasonal ARIMA method for Mahakam load 

data.  In comparison with that study, modeling 

anomalous load for East Kalimantan is more 

challenging due to the relatively large number of 

different types of special days in Mahakam. This extra 

complexity in the data necessitated our development of 

a new rule. Each special day is treated as having a 

unique profile that allows for greater flexibility during 

the modeling. Further methodological development in 

this paper is our adaptation of a Seasonal ARMA 

method recently proposed in this journal for an 

anomalous load. Overall, we found that the rule-based 

triple Seasonal ARIMA method generated the most 

accurate forecasts for special days. For these days, the 
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MAPE obtained using rule-based Seasonal ARIMA 

was about one-third of the MAPE for the simple 

benchmark methods, and about a half of the MAPE of 

the original Seasonal ARIMA method, not rule-based 

and making no attempt to model special days.  One of 

the most encouraging findings in our study was that, 

compared with the original Seasonal ARIMA model, 

treating special days with no difference from normal 

days, the use of rule-based Seasonal ARIMA led to a 

noticeable improvement in accuracy when evaluated 

over special days.  
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