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Anomalous Electricity Load Events: An Evaluation Based on Mahakam Data
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Abstract: This paper investigates a case study on the short-term forecasting of data from Mahakam with
emphasis on special days, such as public holidays. Anomalous load conditions occur on different days, such as
public holidays. These conditions are difficult to model because of their infrequent occurrence and significant
deviation from standard load. A time series of load demand electricity recorded at hourly intervals contains more
than one seasonal pattern. There is a great attraction to using a modeling time series method that is able to capture
triple seasonalities. The triple seasonal ARIMA model has been adapted for this purpose and is competitive for
modeling load. Herein, we demonstrate the triple seasonal ARIMA is an alternative strategy for providing accurate
forecasts of electricity load from Kalimantan for planning, operational maintenance, and market-related activities.
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1. Introduction producers, they are a basic tool for determining optimal

Load forecasting is an important technique for utilization of generators and power stations, as some
obtaining high-accuracy power estimates. Short-term  facilities are more efficient than others. Accurate short-
load forecasting has been a fundamental to the major ~ term forecasts of electricity demand (load) are crucial
interests of the electricity industry. In this decade, ~ for making informed decisions regarding —unit
short-term load forecasting has frequently been applied ~ commitment, energy transfer scheduling, and load
by researchers. Traditionally, hourly forecasts with a  frequency control of power systems. An electric utility
lead time of between one hour and seven days are needs to make these operational decisions daily, often
required for scheduling and controlling power systems  In real-time, to operate in a safe and efficient manner,

regulatory agencies, they provide a primary source for ~ Of distribution networks [11]. Moreover, inaccurate
the safe and reliable operation of the system. For  forecasts can have substantial financial implications on

energy markets. Electricity demand is often modelled
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in terms of a weather variable. However, univariate
methods are frequently considered sufficient for short
lead times because weather variables tend to change in
a smooth fashion over short time frames and, thus, will
be captured in the demand series itself. A variety of
univariate methods have been used for short-term load
forecasting.

Many different methods and models have been
proposed by researchers using a triple seasonal ARIMA
time series (Kim et al. [1]; Arora & Taylor [2]; Fidalgo
& Lopes [3]) or neural network (Lamedica et al. [4];
Atiya et al. [10]) for load forecasting including
anomalous load conditions, such as holidays (Song et
al. [5]). Further, they use fuzzy linear regression
methods for load forecasting using a variety of
approaches, including fuzzy neural computation
(Srinivasan et al. [7]; Norizan et al. [8]), state space
model (Dordonnat, et al. [6]), and triple seasonal
methods for non-anomalous (normal) load forecasting.

In this paper, we extend the triple seasonal methods
to include yearly seasonal cycle by a case study using
data from Mahakam. However, with an eye on
economy and to find a true AR or MA model for higher
order selection models, we also consider the
polynomial of order triple ARIMA, including all lags,
by looking at the sample autocorrelation, partial
autocorrelations, and autocorrelation check for white
noise. Herein, we present a detailed case study using
data from Mahakam-East Kalimantan, which focuses
on the short-term forecasting of anomalous loads using

a range of different modeling approaches. We treat
each special day as having a specific profile in our
adaptation of Taylor's system, introduce an additional
dummy variable into the model to allow greater
flexibility in accommodating special day effects, and
model triple seasonality. In addition, a variety of
different benchmarks are proposed for testing load
forecasts on special days. We test probability density
forecasts through regular and special days, in addition
to generating point forecasts. To the best of our
knowledge, there is no current research on anomalous
load density forecasting.

We start with a presentation of the triple seasonal
ARIMA model. Then, we discuss the results of this
triple seasonal ARIMA model in detail. Finally, we
provide our conclusions based on the forecasting
evaluation method presented in this study.

2. Methodology

This methodology, developed by G. E. P. Box and G.
M. Jenkins [9], approaches a trend and seasonal effects
in time series data that is unique from the approach
taken by regression or exponential smoothing. The
Box-Jenkins methodology begins by determining if the
time series under consideration is stationary.

This is a distinguishing feature from general
seasonal ARIMA models. More broadly, we can write
the general ARIMA model as follows:

4, (B)D, (B*)Q, (B*)I, (B*) VIVAVEVE: (Z, —c)
=0,(B)O,, (B*)¥,, (B%)A,, (B*)a, 1)

If d and D are nonnegative integers, then {Zt} is a

seasonal

ARIMA(p’d’q)X(RL! D11Q1)Sl ><(I:)21 DZ’QZ)S2 X(PS’ D31Q3)S3

process with period S if the differenced series
Y, =VVVEVE:(Z, —c)is a causal ARMA process

4, (B);, (B™)Qy, (B™)I, (B™)Y, =6, (B)O, (B™)¥y, (B*)Aq (B*)a,

For the current study, due to the presence of a triple
seasonal pattern in the short-term Mahakam-East
Kalimantan load demand data, which have daily,
weekly, and yearly seasonal cycles, we developed a
triple seasonal multiplicative ARIMA model. In this

defined by

fa}- WN(0.0?)

section we extend these factors to the general triple
seasonal ARIMA for modeling anomalous load data
from Mahakam-East Kalimantan. The formulation for
this method is presented in the following expressions:



#p(B)®g (B¥)Qp, (B%)Iy, (B*) VIVIV 2V

(I, £(B*) +(L-1)S (B®))(Z, —¢) = 6,(B)®g (B*)¥q, (B?)Ag, (B™) (2)
(1 Nt/l(BSS) +(1-1y, )x(B>)({ Ntat(N) +@1-TIy, )a*))

where
Zt = the load observed at period t,

Cc = constant parameter,
B = the backward shift operator or lag operator,

¢p,d)P1,QP2, and Fps = AR polynomial functions of
order p, P4, P, and P,

Qq,GQl,‘PQZ, and AQ3 = MA  polynomial
functions of order g, Q1, Q2 and Qs
al™) ~NID(0,62) = the model errors for

normal,
al®) ~ NID(0,52) = the model errors for special

days, and variances Gﬁ and 032, while NID equates
to a normally- and independently-distributed process.

The function &(B>)and A(B ) accommodate
the yearly seasonal effect for normal days, the function

C(B%) and  x(B®) accommodate the yearly
seasonal effect for special days.

For example, the multiplicative Triple SARIMA
model is expressed as p,=1,F,=1P,=1P,=1and
differencing is a technique that can also remove

seasonal components and
trends

d=1D,=1D,=1D,=1S,=24,S,=168,S, =8760
0, =0,Q,=0,Q,=0,Q, =0. Hence, the model can

be expressed as Model Triple ARIMA (1,1,0)
(1,1,00%(1,1,0)%(1,1,0)*".

(L~ 4B)(L- ®,B%)(1- Q,B**)(1-T;B""®) (1~ B)(L- B)(1- B'**)(L- B*"®)
(I, E(B%) + (-1, ) (B*))(Z, ~¢) = (I, A(B%) + (11, ) (B*))((I, a™ + -1, )a®)) 3)

where

§(BS3 (t)) —1+ Z'188760 +7, R8760+5,(t-8760) 7, [38760+55(t-8760)+5; (1S5 (t-8760))

é/(BS:,(t)):1+a)188760+a)288760+53(t—8760)+a)SBB76O+S3(t—8760)+S3(t—S3(t—8760))

/1(BS3 (t)) 14 ,LLleGO + 11, R8760+5:(-8760) 1y [38760+53(1-8760)+5; (1S, (t-8760))

K_(BS3(’[)) —1+ 0188760 n UZBS7SO+83(t—876O) n 0388760+S3(t—8760)+83(t—83 (t-8760))

For example, the multiplicative Triple SARIMA
model is expressed as p,=1F, =1P, =1 P, =1and
differencing is a technique that can also remove

seasonal components and
trends

d=1D,=1D,=1D,=1S, =245, =168,S, =8760
0, =1Q,=10Q, =10Q, =1. Hence, the model can be

expressed as Model ARIMA (1,1,1)

(1,1,1)*(1,1,1)*%(1,1,1)%, Consider
¢, =0.82,®, =-0.004,Q, =0.87,,=0.33  and
6,=0.19,0, =0.80, ¥, =0.86,A, =0.32 with

variance estimate 219.6865, AIC 285319.1, and SBC
285378.3, the model can be written as follows:

Triple

(1-#B)(1-D,B*)(1-Q,B**)(1-[;B™) (1 B)(L- B*)(L- B**)(1- B™™)

(IN(é:(BSs)-l- (1—IN( )4(553 ))(Zt —C) — (1_ng)(1_®lBZ4)(1_\PlBles)(l_AlBamo)
(INtﬂ(B%)+(1—IN1)K(BS3))((INIa[(N)+(1_1Nt)al(s)))

where

(4)

§(BS3 (t)) —1+ TlBsmo +1, R8760+5,(t-8760) z, [38760+55(t-8760)+5; (1S5 (t-8760))



g(Bsa(t)) 14 60188760 n a)288760+53(t—8760) " a)3BB760+S3(t—8760)+S3(t—83(t—8760))

p) (Bs3 (t)) —1+ ,uiBng + 14, R8760+5,(t-8760) _ 1y [38760+5(t-8760)+55 (1S4 (t-8760))
K(Bsg(t)) 14 0188760 " 0288760+S3(t—8760) " USBsmms3 (t-8760)+S; (t—S; (t-8760))

For special days the rule-based value for improving the model's forecast for a specific special
S,(t) =8760 allows load findings from three previous  day.
unique days to be included, which would be acceptable

(1-0.81B)(1—0.82B%)(1—0.87B"*)(1— 0.33B*"®) (1— B)(1— B*)(1— B'**)(1- B¥"®)
(I, £(B%) + (11, )¢ (B*))(Z, —¢) = (1-0.19B)(1-0.80B*)(1 - 0.86B'")(L- 0.32B"*")
(Iy A(B*) +(@-T, )x(B¥)(Iy,a™ +(1-1,,)a’™))

®)

3. Data Set e
The data used is the year-hourly load measured in
Megawatt (MW) from January 01, 2015 to December
31, 2018. They are gathered from PLN AP2B SISTEM
KALTIM-Balikpapan, KM. 15 Karang Joang Nort
Balikpapan, Mahakam East Kalimantan electricity
utility company, Balikpapan Indonesia. PLN (The
State-owned electricity company) is one of the most
well-managed power companies in Indonesia. This
utility company has powered for decades through the
transmission, generation, and distribution of electricity. ; P T
The data were divided into sets: Initialization set and Load (W)
test set. Fig. 1 plots the initialization set data. It is clear Probability Plot
from Figs. 1 and 2 that Mahakam-East Kalimantan load 09,9999 '
demand data is non-stationary. 0999 Lo .
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Fig. 2 Plot histogram of load electricity and probability plot
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Fig. 1 Hourly load for Mahakam from 1 January 2015 to 31 4. Res_u Its
December 2018 Plotting the ACF and PACF of Mahakam-East

Kalimantan load data in Fig. 3 shows the seasonal
pattern, which is daily seasonality with length 24.
Therefore pre-processing data is applied using regular
and seasonal differencing to convert non-stationary
load series to stationary load series. Plotting the ACF
and PACF after non-seasonal differencing and daily
seasonal differencing in Fig. 4 indicates another
seasonal pattern: weekly seasonality with length and (7
X 24).
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Fig. 3 Plot ACF and PACF load electricity
before Y, = VdVSDfV?;V?: (Zt — C)and PACF load electricity

Fig. 4 Plotting the load demand series after three
times  differencing, which are  non-seasonal
differencing, daily seasonal differencing, weekly,
yearly seasonal differencing in Fig. 4 indicates that the
load series is stationary. In order words, this
identification step shows that the load data have two
seasonal periods, which are daily, weekly, and yearly
seasonality with length (24), (7 x 24), and (52 x 24),
respectively.
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Fig. 4 Plot load electricity with
Y, = VdVSDllV?;VSD; (Zt —C)and histogram load electricity

Fig. 1 shows the Mahakam-East Kalimantan load
demand series for the fortnight in the middle of the 52
weeks, a within-day seasonal cycle of duration s, = 24
periods, and a within-week seasonal cycle of duration
S; = (14 x 24) periods. The weekdays show similar
patterns of demand, whereas Saturday and Sunday have
different levels and profiles. A visual inspection reveals
that the mean and variance remain stable.
Simultaneously, there are some short runs where
successive observations tend to follow each other for
very brief durations, suggesting that there is indeed
some negative autocorrelation as confirmed by the
sample ACF plot.

Before the first seasonal data, the ACF plot shows
that ACF at lag 1 and lag 12 are significantly different
from zero or are greater than the confidence interval of
ACF. There are several non-seasonal lags (lag 1, lag
2,..., lag 48), and the ACF tends to be cut off after lag
1, whereas PACF diminishes dies down. On the other
hand, ACF and PACF at seasonal lags (lag 12, lag 24,
...) tend to cut off after lag 12, lag 24, lag 168, and lag
8760. Once parameters have been estimated, we check
on the model's adequacy for the load data series. The
estimate values of these regular, seasonal, and non-
seasonal parameters of Model 1 until Model 6 are
greater than 2%, with highly significant at alpha less
than 0.0001 significance level. The theoretical ACF and
PACF of Eq. 2 are presented in Fig. 2.

This model also found that all the parameters are
significant at alpha 0.05 significance level with white
noise residuals based on Ljung-Box * Q statistic until
lags 48. This model also gives 10 extreme residual
values. In terms of the residuals' magnitude, these are
at 11633th, 11632th, 6305th, 7265th, 3041th, 7456th,
11651th, 2415th, 11681th, and 12659th observations.
Similar to the first model, the model residual does not
satisfy the Normal Distribution. The AIC and the SBC
of this model are 194259.2 and 194435.3,
respectively.

The transformed series still possesses seasonality,
but the transformation has substantially reduced the



skewness in the data. An assumption of Gaussian errors
would seem to be considerably more appropriate for
the transformed series. For model 1, these parameters'
estimate values are less than +10% except (AR1,1) and
(AR1,2). The estimate values of these parameters are
less than +£10% except MA(L,2).

4.1. Model 1
The multiplicative Triple SARIMA model is

expressed as p,=1P =(112),P,=2,P,=1 and
differencing is a technique that can also be used to

remove seasonal components and trends with
d=1D,=1D,=1D,=1S,=24,S,=168,S, =8760
and g, =1,Q, = (1,168, 672),Q, =1,Q, =1 hence the
model can be expressed as Model Triple ARIMA
(1,1,1)  ([1,12],1,1)*(2,1,2)**(1,1,1)*"®°.  Consider
¢ =0.82,®, =-0.004,Q2, =0.87,1;, =0.33 and
6,=0.19,0, =0.80,'¥, =0.86,A, =0.32 with

variance estimate 219.6772, AIC 285320.7, and SBC
285405.2, the model can be written as follows:

(1-0.78634B)(1+0.17525B +0.01017B)(1- B)(1— B?*)(1— B'**)(1- B*"*")

(I £(B*)+ (-1, )¢ (B*))(Z, —c) = (1-0.95B)(1+0.005B - 0.85B**° +0.001B°")(1- 0.80B™")

(6)

(1-0.02456B'*°)(1-0.32173B*"*°)(I, A(B*)+ (-1, )x(B*))((I, a'" +(1-I, )a’))

where

§(BS3 (t)) —1+ T188760 +7, R8760+5,(t-8760) 7, [38760+55(t-8760)+5; (1S5 (t-8760)

é/(Bs:;(t)) :1+w188760+a)ZB8760+53(t—8760) +a)3BB76O+S3(t—8760)+53(t—S3(t—8760))

/1(BS3 (t)) —1+ ,LLLBWGO + 14, R8760+5,(t-8760) _ 1y [38760+5(t-8760)+55 (1S5 (t-8760))
K_(BS3(’[)) —1+ 0188760 n UZBS7GO+S3(t—8760) n USBB?GO+S3(I—8760)+S3(t—S3 (t-8760))

4.2. Model 2

The multiplicative Triple SARIMA model is
expressed as p,=LR=2P,=2P,=1 and
differencing is a technique that can also remove
seasonal components and
trends
d=1D,=1D,=1D,=1S,=24,5, =168,S, =8760

g, =1Q,=10Q, =1,Q, =1. Hence, the model can be
expressed as Model Triple ARIMA (1,1,1)
(1,1,2)(1,1,2)*%(1,1,1)%™. Consider
¢ =0.82,®, =-0.004,Q2, =0.87,I;, =0.33 and
6,=0.19,0, =0.80,'¥, =0.86,A, =0.32 with

variance estimate 223.1565, AIC 285860.4, and SBC
285902.7, the model can be written as follows:

(1-0.64863B) (1- B)(1-B*)(1-B**®)(1-B**)(I,, £(B%) +(1-1, )¢ (B*))

(Z,—¢) = (1-0.91169B)(1— 0.81108B%)(1—0.86272B%%)(1— 0.32178B**")
(I A(B*)+(@-T, )x(B¥)(Iy, a™ + (-1, )a’))

where

()

5(883 (t)) 14 1'188760 +1, B8760+5,(t-8760) 7, [38760+53(t-8760)+5; (1S5 (t-8760)

g(Bss(t)) =1+a)188760+a)ZB8760+53(t—8760) +a)sBS760+53(t—8760)+53(t—S3(1—8760))

/1(BS3 (t)) 1+ lemeo + 4, Q8760+ (t-8760) __ 1y 38760+ 4 (t-8760)+5; (1S5 (1-8760)

K_(BS3(I)) —1+ 1)188760 n 0288760+53(t—8760) n USBB760+S3(t—8760)+S3(t—S3 (t-8760))

4.3. Model 3
The multiplicative Triple SARIMA model is

expressed as p,=1PR =[L12],P,=1,P,=1 and
differencing is a technique that can also be used to
remove seasonal components and trends with

and 0, =2,Q, =[1,168,672],Q, =1,Q, =1 hence the
model can be expressed as Model Triple ARIMA
(1,1,2) ([1,12],1,[1,168,672])*(1,1,1)"%¥(1,1,1)*".
Consider the number of observations 34863, with

d=1D,=1D,=1D,=1S, =245,=168S, =8760 ¢ =0.7863,®, =—0.175,d, =—0.01017 and



6, =0.95,@, =—0.0051,0, = 0.856,®, = —0.0016, ¥, = 0.8075, ¥, = 0.02456, A, = 0.32173

with variance estimate 219.6772, the number of
residuals 34667, AIC 285320.7 and SBC 285405.2 the

model can be written as follows:

(1-0.78634B)(1+0.1752B +0.010B"*)(1- B)(1- B*)(1- B***)(1- B™*)(I,, £(B>) + (1-1, ) (B*))(Z, —c)

= (1-0.951B)(L+0.0051B —0.856B'*® + 0.0016B¢"%)(1— 0.81B%)(1- 0.02456B'**)(1- 0.32173B°"®")

(I A(B>)+(A-T )x(B>)(Iy a"™ + -1y )a))

where

(8)

§(BS3(I)) :1+Z_188760+Z_ZB8760+53(t—8760) +z_gBS760+53(t—8760)+83(t—53(t—8760))

5(853(t)):1+wlBs7eo+a)288760+s3(t—8760)+a)aBs7ao+s3(t—8760)+s3(t—sg(t—87eo))

/1(BS3 (t)) —1+ ,LLLBWGO + 14, R8760+5,(t-8760) _ 1y [38760+5(t-8760)+55 (1S4 (t-8760))
K(BS3(t)) 14 0188760 +0, R8760+5,(-8760) v, [38760+53(t-8760)+5; (1S5 (-8760)

4.4, Model 4

The multiplicative Triple  SARIMA model is
expressed  as p,=3FR=2P,=2,P,=1 and
differencing is a technique that can also remove
seasonal components and
trends
d=1,D,=1D,=1,D,=1S,=24,S,=168,S, =8760

g, =3,Q,=2,Q,=1Q, =1. Hence, the model can be
expressed as Model Triple ARIMA (3,1,3)
(1,1,2)(1,1,2)*%(1,1,1)%™. Consider
¢ =0.82,®, =-0.004,Q2, =0.87,1;, =0.33 and
6,=0.19,0, =0.80,'¥, =0.86,A, =0.32 with

variance estimate 2262587, AIC 286341, and SBC
286400, the model can be written as follows:

(1-0.607B)(1+0.321738%) (1- B)(1— B*)(L— B'**)(L- B¥™)(I,, &(B) + (L1, )¢ (B*))(Z, —¢) =

(1-0.6886B°)(1—0.19621B2)(1—0.86474B'*%)(1- 0.31917B*®)

(I A(B>)+(A-1 )x(B>)(Ly a™ +1-1y )a™)

where

9)

5(883(0) =1+TIBS760 +T288760+S3(t—8760) +T3BS760+S3(t—8760)+S3(t—S3(t—8760))

g(BSS(t)) =1+a)188760+a)ZB876m53(t—8760) +a)sBS76O+SS(t—8760)+SS(t—Sg(t—8760))

p) (Bs3 (t)) 14 lemeo + 4, R8760+5:(1-8760) 1y [38760+55(1-8760)+5; (1S, (t-8760))

K_(BS3(I)) —1+ 1)188760 n UZBS76O+S3(t78760) n U3Bss7ec)+s3 (t-8760)+S, (t—S, (t-8760))

4.5. Model 5

The multiplicative Triple SARIMA model is
expressed as p, =3 FR=2P,=2P,=1 and
differencing is a technique that can also remove
seasonal components and
trends
d=1D,=1D,=1D,=1S, =24,S, =168,S, =8760

0, =2,Q =2,Q,=10Q, =1. Hence, the model can be

expressed as Model Triple ARIMA
(I1,2,3,4,5,6],1,[1,2,3,4,5,6])
(1,1,1)*(1,1,1)*%(1,1,1)%° Consider

¢, =1.01,¢,=-0.79,¢4,=0.92,¢9, =-1.004, ¢, =0.41,¢, =-0.1,
and

6,=0.35,0,=0.29,0, =0.14,0, =—0.08,6, =—0.54,4, = 0.71,®, = 0.80, ¥, = 0.86, A, = 0.32

with variance estimate 219.6865, AIC 285235.7, and

SBC 285379.4, the model can be written as follows:



(1-1.015B +0.797B% —0.924B° +1.0048B* — 0.419B° —0.1011B°)(1+ 0.988B)
(1-B)(1-B*)(1-B™**)(1-B**)(1,, §(B*) + (-1, )¢ (B*))(Z, —¢c)
= (1-0.35B - 0.29B% - 0.14B° + 0.08B* + 0.546B° —0.71B°)

(10)
(1-0.803B*)(1—0.86B"**)(1—0.32067B*"*)(I,, A(B*) + (1-1,, )x(B™))
((INta‘[(N) + (:I-_INt )a't(S)))
where
§(BS3 (t)) 1+ 7188760 + Z_ZB8760+53(t—8760) + 2_388760+S3(t—8760)+33(t—53(t—8760))
§(Bs3(t)) 1+ 60188760 + a)288760+53(t—8760) + a)388760+s3(t—8760)+53(t—Sg(t—8760))
/1(833(0) :1+ﬂ188760+lu288760+33(t—8760) +‘u3BS760+53(t—8760)+53(t—S3(t—8760))
K(Bsg(t)) 1+ 0188760 + UZBB7GO+S3(I—876O) + 1)388760+S3 (t-8760)+S; (t—S5 (t-8760))
Forecasting Using Model Triple ARIMA  (1,1,1)*(1,1,1)"%%(1,1,1)¥®
(I1,2,3,4,5,6],1,[1,2,3,4,5,6]) The fifth model can be expressed as follows:

Model for variable x
Period(s) of Differencing 1,24,168,8760
No mean term in this model.

ARIMA Estimation Optimization Summary

Estimation Method Conditional Least Squares
Parameters Estimated 17
Termination Criteria Maximum Relative Change in Estimates
Iteration Stopping Value 0.001
Criteria Value 6.86E-14
Maximum Absolute Value of Gradient 38902.21
R-Square Change from Last Iteration 0.001243
Objective Function Sum of Squared Residuals
Objective Function Value 7591639
Marquardt's Lambda Coefficient 1E12
Numerical Derivative Perturbation Delta 0.001
Iterations 33
Warning Message Estimates may not have converged.

Conditional Least Squares Estimation

Standard Approx
Parameter  Estimate Error tValue Pr>|tf Lag

MAL,6 0.71776 ~ 0.07237  9.92  <.0001
MA2,1 0.01285  0.07024  0.18 0.8549
MA3,1 0.80309 0.0034967 229.67 <.0001 24
MA4,1 0.86170 0.0028267 304.85 <.0001 168
MA5,1 0.32067 0.0053343 60.12 <.0001 8760

MA1,1 0.35065 0.09228 3.80 0.0001 1
MA1,2 0.29056  0.07215 4.03 <.0001 2
MA1,3 0.14270 0.06524 2.19 0.0287 3
MA1,4 -0.08485  0.07688 -1.10 0.2697 4
MAL,5 -0.54600  0.06849 -7.97 <0001 5

6

1

AR11 1.01522 010285  9.87 <.0001
AR1,2 -0.79760  0.12169 -6.55 <.0001
AR1,3 0.92411 0.06676 13.84 <.0001
AR1,4 -1.00483  0.11075 -9.07 <.0001

AR1,5 0.41921  0.10533 3.98 <.0001
AR1,6 0.10115 0.03135 3.23 0.0013
AR2,1 -0.98842  0.0012556 -787.23 <.0001

LU NwWNPR
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Variance Estimate  219.0949
Std Error Estimate  14.80186
AlIC 285235.7
SBC 285379.4
Number of Residuals 34667
* AIC and SBC do not include log determinant.

Correlations of Parameter Estimates
Parameter MAI1,1 MA12 MA1L3 MA14 MAL5 MALG6

MA1,1 1.000 0.463 -0.571 -0.920 -0.726 0.567
MAL1,2 0.463 1.000 0.335 -0.479 -0.821 -0.383
MAL,3 -0.571 0.335 1.000 0.547 -0.146 -0.871
MAL,4 -0.920 -0.479 0.547 1.000 0.654 -0.625
MAL,5 -0.726 -0.821 -0.146 0.654 1.000 0.029
MAL,6 0.567 -0.383 -0.871 -0.625 0.029 1.000
MA2,1 -0.221 -0.650 -0.277 0.224 0.49 0.354
MA3,1 0.177 0.183 -0.004 -0.153 -0.217 -0.007
MA4,1 -0.013 -0.018 0.019 0.019 -0.001 -0.007
MA5,1 -0.004 -0.004 -0.001 0.006 0.006 -0.003
ARL1 0.746 -0.030 -0.702 -0.672 -0.313 0.751
AR1,2 -0.099 0.736 0.645 0.048 -0.408 -0.716
AR1,3 0.119 -0.394 -0.193 -0.033 0.006 0.410
AR1,4 -0.590 0.236 0.682 0.596 0.152 -0.850
AR1,5 0.041 -0.697 -0.600 -0.064 0.444 0.695
ARL,6 0.277 0477 0.059 -0.323 -0.383 -0.097
AR2,1 0.037 0.090 0.059 -0.042 -0.064 -0.059

Correlations of Parameter Estimates
Parameter MA2,1 MA3,1 MA4,1 MA51 AR11 AR12

MA1,1 -0.221 0.177 -0.013 -0.004 0.746 -0.099
MAL,2 -0.650 0.183 -0.018 -0.004 -0.030 0.736
MA1,3 -0.277 -0.004 0.019 -0.001 -0.702 0.645
MA1,4 0.224 -0.153 0.019 0.006 -0.672 0.048
MA1,5 0.496 -0.217 -0.001 0.006 -0.313 -0.408
MA1,6 0.354 -0.007 -0.007 -0.003 0.751 -0.716
MA2,1 1.000 -0.098 -0.001 -0.006 0.482 -0.867
MA3,1 -0.098 1.000 -0.231 -0.024 0.094 0.073
MA4,1 -0.001 -0.231 1.000 -0.041 -0.013 -0.002
MAS5,1 -0.006 -0.024 -0.041 1.000 -0.007 0.003
AR1,1 0.482 0.094 -0.013 -0.007 1.000 -0.683
AR1,2 -0.867 0.073 -0.002 0.003 -0.683 1.000
AR1,3 0.834 -0.003 0.011 -0.008 0.678 -0.795
AR1,4 -0.606 -0.045 0.007 0.008 -0.945 0.799
AR1,5 0912 -0.086 -0.005 -0.005 0.662 -0.976

The SAS System  00:43 Tuesday, February 18, 2003 16
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Correlations of Parameter Estimates
Parameter MA2,1 MA3,1 MA4,1 MA51 AR11 AR1?2

AR1,6 -0.938 0.058 0.004 0.007 -0.395 0.712
AR2,1 -0.145 -0.100 0.092 0.005 -0.079 0.140

Correlations of Parameter Estimates
Parameter AR1,3 AR14 AR15 AR16 AR21

MA1,1 0.119 -0.590 0.041 0.277 0.037
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We have seen that a simple and widely applicable

Load (MW)

MAL,2 -0.394 0.236 -0.697 0.477 0.090
MAL,3 -0.193 0.682 -0.600 0.059 0.059
MA1,4 -0.033 0596 -0.064 -0.323 -0.042
MAL,5 0.006 0.152 0.444 -0.383 -0.064
MAL,6 0.410 -0.850 0.695 -0.097 -0.059
MA2,1 0.834 -0.606 0.912 -0.938 -0.145
MA3,1 -0.003 -0.045 -0.086 0.058 -0.100
MA4,1 0.011 0.007 -0.005 0.004 0.092
MA5,1 -0.008 0.008 -0.005 0.007 0.005
ARL1 0.678 -0.945 0.662 -0.395 -0.079
AR1,2 -0.795 0.799 -0976 0.712 0.140
AR1,3 1.000 -0.764 0.787 -0.824 -0.133
AR1,4 -0.764 1.000 -0.802 0.466 0.098
AR1,5 0.787 -0.802 1.000 -0.758 -0.144
AR1,6 -0.824 0.466 -0.758 1.000 0.163
AR21 -0.133 0.098 -0.144 0.163 1.000

Autoregressive Factors

Factor 1: 1-1.01522 B**(1) + 0.7976 B**(2) - 0.92411 B**(3)
+1.00483 B**(4) - 0.41921 B**(5) - 0.10115 B**(6)
Factor 2: 1 +0.98842 B**(1)

Moving Average Factors

Factor 1: 1 - 0.35065 B**(1) - 0.29056 B**(2) - 0.1427 B**(3)
+0.08485 B**(4) + 0.546 B**(5) - 0.71776 B**(6)
Factor 2: 1-0.01285 B**(1)

Factor 3: 1 - 0.80309 B**(24)

Factor 4: 1 -0.8617 B**(168)

Factor 5: 1 - 0.32067 B**(8760)

Fig. 5 An output SAS Model 5 for Model Triple ARIMA ([1,2,3,4,5,6],1,[1,2,3,4,5,6]) (1,1,1)%4(1,1,1)*%8(1,1,1)87%°

analysis, containing seasonal component is triple

stochastic model for non-stationary time series' seasonal multiplicative Model 5.
450
|
5 i1 100 - [
400 o] L
350 : | ‘h L %01
501 | i
¥ .
1 i Aty £ 60~
250 ! :: 55 E 40+
200 204
Variable
— Forecast
1504 #— Actual o = ‘ : : ‘ : —
S9|54 89:)9 9()‘-!-1 90‘89 91‘34 91_;_79 92‘24 9269 93‘14 9359 -60 -30 RO idual 30 60 90

Fig.

6 Model 5 for ARIMA ([1,2,3,4,5,6],1,[1,2,3,4,5,6]) (1,1,1)%(1,1,1)*%(1,1,1)¥"® and histogram of residuals appear to be white noise

0.8+
0.6

0.4

"'0_‘1[' .

Autocorrelation
s
Partial Antocorrelation

0.4+

-0.6

08
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Fig. 7 Residual ACF and PACF Model 5 for ARIMA ([1,2,3,4,5,6],1,[1,2,3,4,5,6]) (1,1,1)%(1,1,1)'%8(1,1,1)8"%°

500 A

400 -

300

200+

Load (MW)

100 -

0 -

Variable
—@— Forecast
— #— Lower

Upper
—A— Actual
Residual

T T T T T T T T T T
43784 43790 43796 43802 43808 43814 43820 43826 43832 43838

Fig. 8 Model 5 for ARIMA ([1,2,3,4,5,6],1,[1,2,3,4,5,6]) (1,1,1)%(1,1,1)*%(1,1,1)8"%

This model's parameters are significant at alpha 5%
significance level with white noise residuals based on
Ljung-Box statistic Q* until lags 24. Fig. 5 shows three
of our diagnostic tools in one display a sequence plot of
the standardized residuals, the sample ACF of the
residuals, and p-values for the Ljung-Box test statistic
for a whole range of values of k from 6 to 48. The
horizontal dashed line at 5% helps judge the size of the
p-values. It is seen that the series has significant
autocorrelation at lags 1 and 24. The estimated

®,; =1.07611 with lag 1, ®,4 = 0.01178

with lag 24, ©5; =0.81804 with lag 168, models

seem to be caught on the dependence structure of the
color property time series quite well. The standard error
on the lag 1 = 0.02099, lag 24 = 0.01746, lag
168 = 0.0065190 , models seem to be caught on
the color property time series' dependence structure
quite well. The horizontal dashed line at 5% helps
judge the size of the p-values. It is seen that the series
has significant autocorrelation at lags 1 and 24. The
estimated MA(1,1), MA(2,1), MA(3,1) models seem
to be caught on the dependence structure of the color
property time series quite well. Specifically, the models
are first-order moving average, or MA(1,2), MA(1,3),
MA(1,4) models with parameters 0.29056, 0.142, and -
0.084, respectively. Moving average models are always
weakly stationary because they are finite linear
combinations of a white noise sequence for which the
first two moments are time-invariant.

These two criteria penalize the sum of squared
residuals for including additional parameters in the
model. Models that have small values of the AIC or

SBC are considered good models. Good models are
obtained by minimizing either the AIC or BIC. Our
preference is to use SBC. It generally results in a
smaller and hence simpler model. Its use is consistent
with the time-honored model-building principle of
parsimony (all other things being equal, simple models
are preferred to complex ones. This section presents the
AIC and SBC results for hourly lead times up to one
day ahead calculated for the one month post sample
period of each of the two series of load data. The
MAPEs of one-step and I-step ahead out-sample
forecasts using Model Triple ARIMA
([1,2,3,4,5,6],1,[1,2,3,4,5,6])

(1,1,1)%(1,1,1)*%(1,1,1)%°.

Fig. 8 shows that the one-step-ahead out-sample
forecasts are not as much influenced by lead times as
the I-step ahead out-sample forecasts. The out-sample
forecasts based on I-step ahead are highly influenced
by lead times, as shown in Table 1. This is because the
I-step ahead forecasts accumulate the error terms
resulting in low accuracy in forecasting performances.
We then illustrate the MAPE of I-step and one-step
ahead out-sample forecasts of the third model in Fig.
10; the out-samples of actual data and I-step ahead out-
sample forecasts in Fig. 5 and the out-samples of actual
data and one-step ahead out-sample forecasts in Fig. 4.
When one-step ahead out-sample forecasts are
calculated and compared to I-step ahead out-sample
forecasts, the MAPE are reduced with the reduction
percentages of 8,93436%.
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Table 1 The SAS output of the model

The ARIMA Procedure Conditional Least Squares Estimation

Parameter Model 1 Model 2 Model 3 Model 4 Model 5
Count 168 168 168 168 168

N 168 168 168 168 168

N* 0 0 0 0 0

CumN 168 168 168 168 168
Percent 100 100 100 100 100
CumPct 100 100 100 100 100
Mean 0.006593 0.006460 0.006463 0.006460 0.006452
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SE Mean

TrMean

StDev

Variance

CoefVar

Sumof Sum

Sum of squares

Minimum

Q1

Median

0.00042

0.006101

0.005453

0.000030

82.70

1.107689

0.012269

0.000047

0.002669

0.004729

0.000423

0.005959

0.005481

0.000030

84.84

1.085225

0.012026

0.000346

0.002604

0.004826

0.000423

0.005960

0.005481

0.000030

84.81

1.085830

0.012036

0.000233

0.002624

0.004911

0.000423

0.005959

0.005481

0.000030

84.84

1.085225

0.012026

0.000346

0.002604

0.004826

0.000426

0.005964

0.005520

0.000030

85.56

1.083909

0.012082

0.000033

0.002406

0.005090
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Q3

Maximum

Range

IQR

Mode

Skewness

Kurtosis

MSSD

0.009378

0.026740

0.026693

0.006709

1.38

1.67

0.000025

0.009289

0.02744

0.027099

0.006685

1.41

1.95

0.000023

0.009061

0.027640

0.027406

0.006438

1.43

1.99

0.000023

0.009289

0.027445

0.027099

0.006685

1.41

1.95

0.000023

0.008496

0.028229

0.028196

0.006090

1.35

1.77

0.000023
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Fig. 9 Load profile for New Year’s Day
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Fig. 10 Load profile for Christmas Day
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Fig. 13 Load profile for Islamic New Year holiday
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Fig. 14 Load profile for Waisak holiday
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Fig. 15 Load profile for Labour Day
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Fig. 16 Load profile for Bali Hindu holiday
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Fig. 18 Load profile for International Catholic holiday

5. Conclusion
This paper presented a case study on load
forecasting for East Kalimantan, emphasizing

forecasting load on special days using a rule-based
triple Seasonal ARIMA method for Mahakam load
data.  In comparison with that study, modeling
anomalous load for East Kalimantan is more
challenging due to the relatively large number of
different types of special days in Mahakam. This extra

complexity in the data necessitated our development of
a new rule. Each special day is treated as having a
unique profile that allows for greater flexibility during
the modeling. Further methodological development in
this paper is our adaptation of a Seasonal ARMA
method recently proposed in this journal for an
anomalous load. Overall, we found that the rule-based
triple Seasonal ARIMA method generated the most
accurate forecasts for special days. For these days, the
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MAPE obtained using rule-based Seasonal ARIMA
was about one-third of the MAPE for the simple
benchmark methods, and about a half of the MAPE of
the original Seasonal ARIMA method, not rule-based
and making no attempt to model special days. One of
the most encouraging findings in our study was that,
compared with the original Seasonal ARIMA model,
treating special days with no difference from normal
days, the use of rule-based Seasonal ARIMA led to a
noticeable improvement in accuracy when evaluated
over special days.
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