BIOPOLYMERS FOR DRUG DELIVERY: PROPERTIES, PROCESSING, AND APPLICATIONS

1Dr A. Kishore Babu*, 2Dr. Cheepurupalli Prasad, 3Dr M Pradeep Kumar, 4Dr. Virendra Singh, 5Dr. Gulzar Alam, 6Dr. Rohit Mohan*
1School of Pharmacy, KPJ healthcare University, Persiaran Seriemas, Nilai, Negeri Sembilan, Malaysia- 71800. 2Pydah college of Pharmacy, Kakinada, Andhra Pradesh, India- 533003. 3Department of Pharmaceutics, Vasavi Institute of Pharmaceutical Sciences Kadapa-516247 4Geetanjali Institute of Pharmacy, Geetanjali University, N.H 8 Bypass, Manwakhera, Udaipur- 313001. 5Shiv Bali Singh Group of Educational & Training Institute, College of Pharmacy, Malwan, Fatehpur- 212664, UP, India. 6Dept. of Pharmacy Nandlal Prabhu Devi Professional Institute, Village-Alapur, Near Subhash Adarsh Inter College, Barabanki, Uttar Pradesh 225001.

Abstract

: Biopolymers provide a plethora of applications in the pharmaceutical and medical applications. A material that can be used for biomedical applications like wound healing, drug delivery and tissue engineering should possess certain properties like biocompatibility, biodegradation to non-toxic products, low antigenicity, high bio-activity, processability to complicated shapes with appropriate porosity, ability to support cell growth and proliferation and appropriate mechanical properties, as well as maintaining mechanical strength. This paper reviews biodegradable biopolymers focusing on their potential in biomedical applications. Biopolymers most commonly used and most abundantly available have been described with focus on the properties relevant to biomedical importance.

Keywords:

:#


Full Text:

PDF


References


[1] Babu, A. K., Teja, N. B., Ramakrishna, B., Kumar, B. B., & Reddy, G. V. (2011). Formulation and evaluation of double walled microspheres loaded with pantoprazole. METHODS, 15, 28. [2] Babu, K., & Ramana, M. V. (2016). Development and in vivo evaluation of gastro retentive floating tablets of antipsychotic drug risperidone. Int J Pharm Pharm Sci, 11, 43-52. [3] Babu, A. K., Reddy, V. R., Reddy, N., & Vidyasagar, J. (2010). Evaluating the post compression parameter of ibuprofen by using super disintegrants. An Int J Adv Pharm Sci, 1(2), 247-53. [4] Tatipamula, V. B., Polimati, H., Gopaiah, K. V., Babu, A. K., Vantaku, S., Rao, P. R., & Killari, K. N. (2020). Bioactive Metabolites from Manglicolous Lichen Ramalina leiodea (Nyl.) Nyl. Indian Journal of Pharmaceutical Sciences, 82(2), 379-384. [5] Babu, A. K., & Ramana, M. V. (2016). In vitro and in vivo evaluation of quetiapine fumarate controlled gastro retentive floating drug delivery system. International Journal of Drug Delivery, 8(1), 12-22. [6] Babu, A. K., & Ramana, M. V. A review on floating drug delivery system. 7(1), 75-99. [7] Thadanki, M., & Babu, A. K. (2015). Review on Ethosomes: A novel approach of Liposomes. International Journal of Pharmacy & Life Sciences, 6(1), 85-99. [8] Ramana, M., Babu, A., & Thadanki, M. (2014). Formulation Development And Evaluation Of Omeprazole Microspheres by Using the pH sensitive enteric polymers (LB590). The FASEB Journal, 28, LB590. [9] Babu, A. K., Sree, S. N., & Chandralekha, S. P. (2019). A Review on Benign Prostatic Hyperplasia. World Journal of Current Medical and Pharmaceutical Research, 192-197. [10] Babu, A. K., & Mamatha, P. (2022). Formulation And Optimization Of Ceritinib Loaded Nanobubbles By Box-Behnken Design. International Journal of Applied Pharmaceutics, 14(4), 219–226. Https://Doi.Org/10.22159/Ijap.2022v14i4.44388 [11] Ponnaganti, M., & Babu, A. K. (2021). Preparation, Characterization And Evaluation Of Chitosan Nanobubbles For The Targeted Delivery Of Ibrutinib. Nveo-natural volatiles & essential oils Journal| NVEO, 5017-5037. [12] Babu, A. K. (2018). Development and Characterization of Orlistat Floating Microballoons. Int. J. Res. Pharm, L. Sci, 6(2), 55-60. [13] Babu, A. K., Kumar, M. P., Krupavaram, B., Mandadi, S. R., Lakshmi, L., Manikandhan, R., Sultana, R. (2022) Diabetic foot ulcer, antimicrobial remedies and emerging strategies for the treatment: An overview. International Journal of Health Sciences, (III), 2835-2850. [14] Morgado, P.I.; Aguiar-Ricardo, A.; Correia, I.J.(2015). Asymmetric membranes as ideal wound dressings:An overview on production methods, structure, properties and performance relationship. J. Membr. Sci. 490, 139–151. [15] Manimalha, B.; Ravi, K.T.; Mary, B. (2001). Skin substitutes: A review. Burns, 27, 534–544. [16] Norouzi, M.; Boroujeni, S.M.; Omidvarkordshouli, N.; Soleimani, M. Advances in skin regeneration: Application of electrospun scaffolds. Adv. Healthc. Mater. 8, 1114–1133. [17] Chaudhari, A.A.; Vig, K.; Baganizi, D.R.; Sahu, R.; Dixit, S.; Dennis, V.; Pillai, S.R. (2016) Future prospects for scaffolding methods and biomaterials in skin tissue engineering: A review. Int. J. Mol. Sci. 17, 1974. [18] Capanema, N.S.; Mansur, A.A.; de Jesus, A.C.; Carvalho, S.M.; de Oliveira, L.C.; Mansur, H.S. (2018). Superabsorbent cross-linked carboxymethyl cellulose-PEG hydrogels for potential wound dressing applications. Int. J. Biol. Macromol. 106, 1218–1234. [19] Madaghiele, M.; Demitri, C.; Sannino, A.; Ambrosio, L. (2014). Polymeric hydrogels for burn wound care: Advanced skin wound dressings and regenerative templates. Burns Trauma, 2, 153–161. [20] Ravichandiran, P.; Masłyk, M.; Sheet, S.; Janeczko, M.; Premnath, D.; Kim, A.R.; Park, B.; Han, M.; Yoo, D.J.(2019).Synthesis and Antimicrobial Evaluation of 1,4-Naphthoquinone Derivatives as Potential Antibacterial Agents. ChemistryOpen 2019, 8, 589–600. [20] Ravichandiran, P.; Sheet, S.; Premnath, D.; Kim, A.R.; Yoo (2019) D.J. 1,4-Naphthoquinone Analogues: Potent Antibacterial Agents and Mode of Action Evaluation. Molecules 24, 1437. [21] Ravichandiran, P.; Athinarayanan, J.; Premnath, D.; Periasamy, V.S.; Alshatwi, A.A.; Vasanthkumar, S. (2015). Synthesis, molecular docking and biological evaluation of novel 6-(4-(4-aminophenylsulfonyl) phenylamino)-5H-benzo [a] phenothiazin-5-one derivatives. Spectrochim. Acta A Mol. Biomol. Spectrosc. 139, 477–487. [22] Dhivya, S.; Padma, V.V.; Santhini, E. (2015). Wound dressings A review. BioMedicine, 22. [23] Parani, M.; Lokhande, G.; Singh, A.; Gaharwar, A. (2022). Engineered Nanomaterials for Infection Control and Healing Acute and Chronic Wounds. ACS Appl. Mater. Interfaces 2016, 8, 10049–10069. [24] Stefanov, I.; Pérez-Rafael, S.; Hoyo, J.; Cailloux, J.; Pérez, O.O.S.; Hinojosa-Caballero, D.; Tzanov, T. (2017). Multifunctional Enzymatically Generated Hydrogels for Chronic Wound Application. Biomacromolecule, 18, 1544–1555. [25] Varaprasad, K.; Jayaramudu, T.; Kanikireddy, V.; Toro, C.; Sadiku, E.R. (2020). Alginate-based composite materials for wound dressing application: A mini review. Carbohydr. Polym, 236, 116025. [26] Shitole, A.A.; Raut, P.W.; Khandwekar, A.; Sharma, N.; Baruah, M. (2019). Design and engineering of polyvinyl alcohol based bi-omimetic hydrogels for wound healing and repair. J. Polym. Res, 26, 201. [27] Kenawy, E.; Omer, A.M.; Tamer, T.M.; Elmeligy (2019), M.A.; Eldin, M.M. Fabrication of biodegradable gela-tin/chitosan/cinnamaldehyde crosslinked membranes for antibacterial wound dressing applications. Int. J. Biol. Macromol. 139, 440–448. [PubMed] [28] Poonguzhali, R.; Basha, S.K.; Kumari, V.S. (2018). Novel asymmetric chitosan/PVP/nanocellulose wound dressing: In vitro and in vivo evaluation. Int. J. Biol. Macromol, 112, 1300–130. [29] Jafari, A.; Hassanajili, S.; Karimi, M.B.; Emami, A.; Ghaffari, F.; Azarpira, N. (2018). Effect of organic/inorganic nanoparticles on performance of polyurethane nanocomposites for potential wound dressing applications. J. Mech. Behav. Biomed. Mate, 88, 395–405. [30] Nethi, S.K.; Das, S.; Patra, C.R.; (2019). Mukherjee, S. Recent advances in inorganic nanomaterials for wound-healing applications. Biomater. Sci. 2019, 7, 2652–2674. [31] Parham, S.; Wicaksono, D.H.; Bagherbaigi, S.; Lee, S.L.; Nur, H. Antimicrobial treatment of different metal oxide nanoparti-cles: A critical review. J. Chin. Chem. Soc. 2016, 63, 385–393. [32] Nikolova, M.P.; Chavali, M.S. (2020). Metal Oxide Nanoparticles as Biomedical Materials. Biomimetics, 5, 27. [33] Stoica, A.E.; Chircov, C.; Grumezescu, A.M. (2020). Nanomaterials for Wound Dressings: An Up-to-Date Overview. Molecules, 25, 2699. [34] Kalashnikova, I.; Das, S.; Seal, S. (2015). Nanomaterials for wound healing: Scope and advancement. Nanomedicine, 10, 2593–2612. [35] Wells, A.; Nuschke, A.; Yates, C.C. (2016). Skin tissue repair: Matrix microenvironmental influences. Matrix Biol, 49, 25–36. [36] Dumville, J.C.; Gray, T.A.; Walter, C.J.; Sharp, C.A.; Page, T.; Macefield, R.; Blazeby, J. (2016). Dressings for the prevention of surgical site infection. Cochrane Database Syst. Rev, 12, [37] Rakhshaei, R.; Namazi, H. (2017) A potential bioactive wound dressing based on carboxymethyl cellulose/ZnO impregnated MCM-41 nanocomposite hydrogel. Mater. Sci. Eng, 73, 456–464. [38] Khorasani, M.T.; Joorabloo, A.; Moghaddam, A.; Shamsi, H.; MansooriMoghadam, Z. (2018). Incorporation of ZnO nanoparticles into heparinized polyvinyl alcohol/chitosan hydrogels for wound dressing application. Int. J. Biol. Macromol, 114, 1203–1215. [39] Joorabloo, A.; Khorasani, M.T.; Adeli, H.; Mansoori-Moghadam, Z.; Moghaddam, A. (2019). Fabrication of heparinized nano ZnO/poly(vinylalcohol)/carboxymethyl cellulose bionanocomposite hydrogels using artificial neural network for wound dressing application. J. Ind. Eng. Chem, 70, 253–263. [40] Rao, K.M.; Suneetha, M.; Zo, S.; Duck, K.H.; Han, S.S. (2019). One-pot synthesis of ZnO nanobelt-like structures in hyaluronan hydrogels for wound dressing applications. Carbohydr. Polym, 223, 115124. [41] Jatoi, A.W. (2020). Polyurethane nanofibers incorporated with ZnAg composite nanoparticles for antibacterial wound dressing applications. Compos. Commun, 19, 103–107. [42] Majumder, S.; Dahiya, U.R.; Yadav, S.; Sharma, P.; Ghosh, D.; Rao, G.K.; Rawat, V.; Kumar, G.; Kumar, A.; Srivastava, C.M. (2020). Zinc Oxide Nanoparticles Functionalized on Hydrogel Grafted Silk Fibroin Fabrics as Efficient Composite Dressing. Biomolecules, 10, 710. [43] Naseri-Nosar, M.; Farzamfar, S.; Sahrapeyma, H.; Ghorbani, S.; Bastami, F.; Vaez, A.; (2017). Salehi, M. Cerium oxide nanoparti-clecontaining poly (ε-caprolactone)/gelatin electrospun film as a potential wound dressing material: In vitro and in vivo evaluation. Mater. Sci. Eng. C, 81, 366–372.

Refbacks

  • There are currently no refbacks.