STUDY OF THE THERMOELECTRIC AND OPTICAL PROPERTIES OF MOLECULAR NANOJUNCTIONS

Marwa abdulhussaien kadhim 1, Oday A. Al-Owaedi 2
1,2 Dept. of Laser Physics, College of Science ,University of Babylon / Babylon /Iraq marwaa.kadhim@gmail.com; oday.alowaedi@gmail.com

Abstract

: In this study, Quantum interference (QI) is one of the most fundamentals science, which can be a powerful strategy to control and enhance the electric, thermoelectric and spectral properties of single molecules. Here, the density-functional-theory-based quantum transport calculations have been used to figure out the electrical conductance (G/G0), which supplies unique understanding into the thermopower (S) and emission oscillator strength (fem) of from a series of oligophenylene-ethynylene (OPE) derivatives with thiol end-groups, and para or meta transport connections, which underpins their spectral and heat transport properties. The molecules with meta connection (OPE-4,5,6) demonstrated the signature of a destructive quantum interference, which resulted to a low conductance (0.65×10-4, 0.5×10-6, and 0.17×10-6) respectively produce a high thermopower (165, 182, and 266 μVK-1). These structures yield very low emission oscillator strength (0.96, 0.75, and 0.66) respectively. In contrast, the para linking in molecules OPE-1,2,3 led to a constructive quantum interference, which was the reason for the high conductance (0.52×10-3, 0.88×10-3, and 0.22×10-2) respectively. These molecule exhibited a low thermopower (22, 21, and 13), and a high emission oscillator strength (2.15, 2.15, and 2.03) respectively. Finally, the properties of all molecules studied here are dominated by the highest occupied molecular orbital (HOMO) level.

Keywords:

:: Quantum, Nano-electronic , Gaussian, GOLLUM, SIESTA.


Full Text:

PDF


References


[1] H. Sadeghi, S. Sangtarash, C.J. Lambert, Oligoyne molecular junctions for efficient room temperature thermoelectric power generation, Nano Lett. 15(11) (2015) 7467–7472. [2] G.J. Ashwell, B. Urasinska, C. Wang, M.R. Bryce, I. Grace, C.J. Lambert, Single-molecule electrical studies on a 7nm long molecular wire, Chem. Commun. 45 (2006) 4706–4708. [3] H. Akkerman, P. Blom, D. De Leeuw, B. De Boer, Towards molecular electronics with large-area molecular junctions, Nature 441(7089) (2006) 69–72. [4] T. Li, J. Hauptmann, Z. Wei, Solution processed ultrathin chemically derived graphene films as soft top contacts for solid state molecular electronic junctions, Adv. Mater. 24(10) (2012) 1333–1339. [5] G. Wang, Y. Kim, M. Choe, T.-W. Kim, T. Lee, A new approach for molecular electronic junctions with a multilayer graphene electrode, Adv. Mater. 23(6) (2011) 755–760. [6] A. Neuhausen, A. Hosseini, J.A. Sulpizio, C.E.D. Chidsey, D. Goldhaber-Gordon, Molecular junctions of self-assembled monolayers with conducting poly-mer contacts, ACS Nano 6(11) (2012) 9920–9931. [7] M. Magoga, C. Joachim, Conductance of molecular wires connected or bonded in parallel, Phys. Rev. B 59(24) (1999) 16011–16021. [8] C.M. Finch, V.M. García-Suárez, C.J. Lambert, Giant thermopower and figure of merit in single-molecule devices, Phys. Rev. B, Condens. Matter Mater. Phys. 79 (2009) 2–5. [9] J.P. Bergfield, C.A. Stafford, Thermoelectric signatures of coherent transport in single-molecule heterojunctions, Nano Lett. 9(8) (2009) 3072–3076. [10] M. Bürkle, L. Zotti, J. Viljas, D. Vonlanthen, A. Mishchenko, T. Wandlowski, M. Mayor, G. Schön, F. Pauly, Ab initiostudy of the thermopower of biphenyl-based single-molecule junctions, Phys. Rev. B 86(11) (2012) 115304. [11] O. Entin-Wohlman, Y. Imry, A. Aharony, Three-terminal thermoelectric transport through a molecular junction, Phys. Rev. B 82(11) (2010) 115314. [12] S. Sangtarash, C. Huang, H. Sadeghi, G. Sorohhov, J. Hauser, T. Wandlowski, W. Hong, S. Decurtins, S.-X. Liu, C.J. Lambert, Searching the hearts of graphene-like molecules for simplicity, sensitivity, and logic, J.Am. Chem. Soc. 137(35) (2015) 11425–11431. [13] Y. Geng, S. Sangtarash, C. Huang, H. Sadeghi, Y. Fu, W. Hong, T. Wandlowski, S. Decurtins, C.J. Lambert, S.-X. Liu, Magic ratios for connectivity-driven electrical conductance of graphene-like molecules, J.Am. Chem. Soc. 137(13) (2015) 4469–4476. [14] H. Sadeghi, J.A. Mol, C.S. Lau, G.A.D. Briggs, J. Warner, C.J. Lambert, Conductance enlargement in picoscale electroburnt graphene nanojunctions, Proc. Natl. Acad. Sci. USA 112(9) (2015) 2658–2663. [15] H. Vazquez, R. Skouta, S. Schneebeli, M. Kamenetska, R. Breslow, L. Venkataraman, M.S. Hybertsen, Probing the conductance superposition law in single-molecule circuits with parallel paths, Nat. Nanotechnol. 7(10) (2012) 663–667. [16] S. Ballmann, R. Härtle, P.B. Coto, M. Elbing, M. Mayor, M.R. Bryce, M. Thoss, H.B. Weber, Experimental evidence for quantum interference and vibra-tionally induced decoherence in single-molecule junctions, Phys. Rev. Lett. 109(5) (2012) 1–5. [17] S.V. Aradhya, J.S. Meisner, M. Krikorian, S. Ahn, R. Parameswaran, M.L. Steigerwald, C. Nuckolls, L. Venkataraman, Dissecting contact mechanics from quantum interference in single-molecule junctions of stilbene derivatives, Nano Lett. 12(3) (2012) 1643–1647. [18] V. Kaliginedi, P. Moreno-García, H. Valkenier, W. Hong, V.M. García-Suárez, P. Buiter, J.L.H. Otten, J.C. Hummelen, C.J. Lambert, T. Wandlowski, Corre-lations between molecular structure and single-junction conductance: acase study with oligo(phenylene–ethynylene)-type wires, J.Am. Chem. Soc. 134(11) (2012) 5262–5275. [19] S.V. Aradhya, L. Venkataraman, Single-molecule junctions beyond electronic transport, Nat. Nanotechnol. 8(6) (2013) 399–410. 10 [20] C.R. Arroyo, S. Tarkuc, R. Frisenda, J.S. Seldenthuis, C.H.M. Woerde, R. Eelkema, F.C. Grozema, H.S.J. van der Zant, Signatures of quantum interference effects on charge transport through a single benzene ring, Angew. Chem., Int. Ed. Engl. 52(11) (2013) 3152–3155. [21] C.M. Guédon, H. Valkenier, T. Markussen, K.S. Thygesen, J.C. Hummelen, S.J. van der Molen, Observation of quantum interference in molecular charge transport, Nat. Nanotechnol. 7(5) (2012) 305–309. [22] F. Prins, A. Barreiro, J.W. Ruitenberg, J.S. Seldenthuis, N. Aliaga-Alcalde, L.M.K. Vandersypen, H.S.J. van der Zant, Room-temperature gating of molecular junctions using few-layer graphene nanogap electrodes, Nano Lett. 11(11) (2011) 4607–4611. [23] K. Baheti, J.A. Malen, P. Doak, P. Reddy, S.Y. Jang, T.D. Tilley, A. Majumdar, R.A. Segalman, Probing the chemistry of molecular heterojunctions using thermoelectricity, Nano Lett. 8(2) (2008) 715–719. [24] S.K. Yee, J.A. Malen, A. Majumdar, R.A. Segalman, Thermoelectricity in fullerene–metal heterojunctions, Nano Lett. 11(10) (2011) 4089–4094. [25] S.K. Lee, T. Ohto, R. Yamada, H. Tada, Thermopower of benzenedithiol and C60molecular junctions with Ni and Au electrodes, Nano Lett. 14(9) (2014) 5276–5280. [26] J. Malen, P. Doak, K. Baheti, Identifying the length dependence of orbital alignment and contact coupling in molecular heterojunctions, Nano Lett. 9(3) (2009) 1164–1169. [27] A. Tan, J. Balachandran, S. Sadat, V. Gavini, B.D. Dunietz, S.-Y. Jang, P. Reddy, Effect of length and contact chemistry on the electronic structure and thermoelectric properties of molecular junctions, J.Am. Chem. Soc. 133(23) (2011) 8838–8841. [28] J. Balachandran, P. Reddy, End-group-induced charge transfer in molecular junctions: effect on electronic-structure and thermopower, J.Phys. Chem. Lett. 3(15) (2012) 1962–1967. [29] J.R. Widawsky, W. Chen, H. Vázquez, T. Kim, R. Breslow, M.S. Hybertsen, L. Venkataraman, Length-dependent thermopower of highly conducting Au–C bonded single molecule junctions, Nano Lett. 13(6) (2013) 2889–2894. [30] W.B. Chang, C. Mai, M. Kotiuga, J.B. Neaton, G.C. Bazan, R.A. Segalman, Controlling the thermoelectric properties of thiophene-derived single-molecule junctions, Chem. Mater. 26(24) (2014) 7229–7235. [31] C. Evangeli, K. Gillemot, E. Leary, M.T. González, G. Rubio-Bollinger, C.J. Lambert, N. Agraït, Engineering the thermopower of C60molecular junctions, Nano Lett. 13(5) (2013) 2141–2145. [32] Y. Kim, W. Jeong, K. Kim, W. Lee, P. Reddy, Electrostatic control of thermoelectricity in molecular junctions, Nat. Nanotechnol. 9(11) (2014) 881–885. [33] Economou, E. N., and R. W. John. "Book-Review-Green's Functions in Quantum Physics " , Astronomische Nachrichten , Vol. 306 , p 340, 1985. [34] Mello, Pier A., and Narendra Kumar. “Quantum Transport in Mesoscopic Systems: Complexity and Statistical Fluctuations. A Maximum Entropy Viewpoint” , Oxford University Press, Vol. 4 , 2004. [35] J Ferrer, C J Lambert, V M García-Suárez, D Zs Manrique, D Visontai, L Oroszlany, R Rodríguez-Ferradás, I Grace, S W D Bailey, K Gillemot, Hatef Sadeghi and L A Algharagholy , "GOLLUM: a next-generation simulation tool for electron, thermal and spin transport." New Journal of Physics , Vol.16 , No. 9, p . 93029 , 2014.

Refbacks

  • There are currently no refbacks.