#### References

[1] Biot,M.A. (1956).,“Thermoelasticity and irreversible thermodynamics”, Journal of Applied Physics, American Institute of Physics.27 (3):240-253.
[2] Lord H.W., and Shulman Y. (1967)., "A generalized dynamical theory of thermoelasticity",Journal of the
` Mechanics and Physics of Solids,15(5):299-309.
[3] Green A.E., and Lindsay K.A.(1972), “Thermoelasticity”. J Elasticity. 2:1–7.
[4] Green A.E., Naghdi P.M. (1991), “A re-examination of the basic postulates of thermomechanics”, Proc Roy Soc Lond A. 432:171–194.
[5] Green A.E., Naghdi P.M.(1992), “On undamped heat waves in an elastic solid”. J Thermal Stress. 15: 253– 264.
[6] Green A.E., Naghdi P.M.(1993) “Thermoelasticity without energy dissipation”. J Elast.1993; 31:189–208.
[7] Tzou, D. Y.(1995) ," A unified approach for heat conduction from macro-to-micro- scales" Journal Heat Transfer,117(1):8-16.
[8] Mandelis, A.(1987), "Photoacoustic and Thermal wave Phenomena in Semiconductors" Elsevier Science, North- Holland, New York.
[9] Almond, D.P., and Patel, P.M.(1996), "Photothermal Science and Techniques" Chapman and Hall,London.
[10] Mandelis, A., and Michaelian, K.H. (1997),"Photoacoustic and Photothermal Science and Engineering" Optical Engineering, 36(2):301-302.
[11] Nikolic, P.M., and Todorovic, D.M.(1989), “Photoacoustic and electroacoustic properties of semiconductors”,Prog Quantum Electron , 13:107-189.
[12] McDonald, F.A. and Wetsel, G.C. (1978). “Generalized Theory of the Photoacoustic Effect”, J.Appl. Phys., 49(4):2313–2322.
[13] Jackson, W. and Amer, N.M.(1980), “Piezoelectric Photoacoustic Detection: Theory and Experiment”, J.Appl. Phys., 51(6): 3343–3353.
[14] Stearns, R. and Kino, G.(1985), “Effect of Electronic Strain on Photoacoustic Generation in Silicon”,Appl.Phys. Lett., 47(10): 1048–1050.
[15] Todorović, D.(2003a),“Photothermal and Electronic Elastic Effects in Microelectromechanical Structures”,Rev. Sci. Instruments, 74(1): 578–581.
[16] Todorović, D.(2003b), “Plasma, Thermal, and Elastic Waves in Semiconductors”, Rev. Sci.Instruments, 74(1): 582–585.
[17] Todorović, D.(2005), “Plasmaelastic and Thermoelastic Waves in Semiconductors”, J. Phys. IV (Proc.)EDP
Sci.,125:551–555.
[18] Sharma,K.(2010),“Boundary value problems in generalised thermodiffusive elastic medium,” J. Solid Mech,2(4):348- 362.
[19] Sharma, S. & Sharma, K. & Bhargava, R.R.(2013), “Effect of viscosity on wave propagation in anisotropic thermoelastic with Green-Naghdi theory type-II and type- III”. Materials Physics and Mechanics. (16): 144- 158.
[20] Sharma, S. and Sharma, K.(2014), “Influence of Heat Sources and Relaxation Time on Temperature Distribution in Tissues”. International Journal of Applied Mechanics and Engineering.19.10.2478/ijame- 2014- 0029.
[21] Lotfy, Kh., Kumar, R., Hassan, W., and Gabr, M. (2018), “Thermomagnetic effect with microtemperature in a semiconducting photothermal excitation medium”, Appl.Math Mech.-Engl. Ed, 39: 783–796.
[22] Jahangir, A., Tanvir, F., and Zenkour, A.M. (2020), “Reflection of photothermoelastic waves in a semiconductor material with different relaxations”, Indian Journal of Physics,95:51-59.
[23] Zenkour, A.M. (2020), “Exact coupled solution for photothermal semiconducting beams using a refined multi- phase-lag theory”, Optics and Laser Technology, 128: 106233.
[24] Sharma, N., and Kumar,R. (2021),”Photo-Thermoelastic Investigation Of Semiconductor Material Due To Distributed Loads”, Journal of Solid Mechanics , 13(2): 202-212.
[25] Sharma, N., and Kumar,R. (2022), “Photothermoelastic deformation in dual phase lag model due to concentrated inclined load”, Italian Journal of pure and Applied Mathematics.
[26] Kumar,R.,Sharma,N. and Chopra,S. (2022)“ Modelling of thermomechanical response in anisotropic photothermoelastic plate”., International Journal of Mechanical Engineering, vol- 6, ISSN: 0974-
5823.
[27] Kumar,R.,Sharma,N. and Chopra,S.(2022)“ Photothermoelastic interactions under Moore-Gibson-Thompson thermoelasticity”, Coupled System mechanics.
[28] Thompson PA.(2019), “Compressible-Fluid Dynamics”, New York: McGraw-Hill(1972).
[29] Quintanilla, R.(2019), “Moore–Gibson–Thompson thermoelasticity”, Mathematics and Mechanics of Solids, 1- 12, ISSN: 1741-3028.
[30] Conti, M. , Pata, V., and Quintanilla, R.(2020), “On the analyticity of the MGT-viscoelastic plate with heat conduction”,Journal of Differential Equations”, 269(10);7862-7880.
[31] Marin, M., Andreas, Ö., and Bhatti, M.(2020),“Some results in Moore-Gibson- Thompson thermoelasticity of dipolar bodies”. ZAMM - Journal of Applied Mathematics and Mechanics.100(2).
[32] Abouelregal, A., Elagan S. K., and Alshehri, N.(2021), “Modified Moore–Gibson– Thompson photo- thermoelastic model for a rotating semiconductor half- space subjected to a magnetic field” International Journal of Modern Physics , doi: 10.1142/s0129183121501631.
[33] Bazarra, N., Fernández, J.R., and Quintanilla, R.(2022), “On the numerical approximation of a problem involving a mixture of a MGT viscous material and an elastic solid”. Comp. Appl.Math. 41, 76.
doi:10.1007/s40314-022-01784-8.
[34] Biot M. A. Theory of stress -strain relations in anisotropic viscoelasticity and relaxation phenomena. Journal of Applied Physics,25(11):1385-1391(1954).
[35] Biot M. A. Variational principles in irreversible thermodynamics with application to viscoelasticity. Physical Review.97(6):1463-1469(1955).
[36] Drozdov A. A constitutive model in finite thermoviscoelasticity based on the concept of transient networks. Acta Mechanica.133( 1-4):13-37(1999).
[37] Conti, M. , Pata, V., and Quintanilla, R., “On the analyticity of the MGT- viscoelastic plate with heat conduction”,Journal of Differential Equations”, 269(10);7862-7880(2020).
[38] Youssef, H.M., ,El-Bary, A. ,Atef, H.M., and El-Sharif, A.H., “Numerical analysis of the damage mechanics variable and vibration of a viscothermoelastic microbeam with variable thermal conductivity”. Journal of Vibroengineering. 23. 10.21595/jve.2020.21456(2020).
[39] Youssef, H.M. and Al-Lehaibi, E.A.N. “The vibration of a viscothermoelastic nanobeam of silicon nitride with variable thermal conductivity induced by ramp-type thermal loading”. J Therm Anal Calorim 146, 2387–2402 (2021). https://doi.org/10.1007/s10973-021-10615-7.
[40] Conti M., Pata V.,Pellicer M. and Quintanilla R ., “A new approach to MGT-thermoviscoelasticity”. Discrete Contin Dyn Syst 41:4645–4666(2021).
[41] Bazarra, N., Fernández, J.R., and Quintanilla, R., “On the numerical approximation of a problem involving a mixture of a MGT viscous material and an elastic solid”. Comp. Appl.Math. 41, 76.doi:10.1007/s40314- 022-01784-8(2022).
[42] Abouelregal, A.E., Ahmad, H., Badr, S.,Almutairi, B., and Almohsen, B.,“Viscoelastic stressed microbeam analysis based on Moore-Gibson-Thompson heat equation and laser excitation resting on Winkler foundation”. Journal of Low Frequency Noise Vibration and Active Control.(41):1-22.doi: 10.1177/14613484211040318(2022).