RECENT TREATMENT APPROACHES IN OCULAR DRUG DELIVERY SYSTEM: A REVIEW

Abhishek Kumar Yadav Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, UP, abhi.kuyadav@gmail.com
Anjna Rani Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, UP
Veena Devi Singh Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, UP

Abstract

The bioavailability of the active drug substance is often the major drawback to overcome. The effective concentration of drug in the eye for sufficient period of time is a promising management for the eye ailments. The ocular dosage form, such as eye drops, are no longer sufficient to combat ocular diseases. Designing an effective therapy for ocular diseases, especially for the posterior segment, has been considered as a complicated task. Transporter targeted drug delivery has generated a great deal of interest in the field because of its potential to overcome many barriers associated with current therapy. Application of in-situ gel has been very promising in the treatment of an ocular diseases. In this review, we have briefly discussed several ocular drug delivery systems such as microemulsions, nanosuspensions, nanoparticles, liposomes, niosomes, implants, and in-situ gels.

Keywords:

Permeation barrier, Drug transporters, Eye segments, Drug release method, Permeation enhancement.


Full Text:

PDF


References


1. Hughes PM, Mitra AK. Overview of ocular drug delivery and iatrogenic ocular cytopathologies. Drugs and the pharmaceutical sciences. 1993;58:1-27. 2. Lang JC. Ocular drug delivery conventional ocular formulations. Advanced drug delivery reviews. 1995 Aug 1;16(1):39-43. 3. Janoria KG, Gunda S, Boddu SH, Mitra AK. Novel approaches to retinal drug delivery. Expert opinion on drug delivery. 2007 Jul 1;4(4):371-88. 4. Lang JC. Ocular drug delivery conventional ocular formulations. Advanced drug delivery reviews. 1995 Aug 1;16(1):39-43. 5. Nanjawade BK, Manvi FV, Manjappa AS. RETRACTED: In situ-forming hydrogels for sustained ophthalmic drug delivery. Journal of Controlled Release. 2007 Sep 26;122(2):119-34. 6. Sahoo SK, Dilnawaz F, Krishnakumar S. Nanotechnology in ocular drug delivery. Drug discovery today. 2008 Feb 1;13(3-4):144-51. 7. Weidener J. Mucoadhesive ocular inserts as an improved delivery vehicle for ophthalmic indications. Drug Discovery Today. 2003;8:906-7. 8. Hammond MB. Ophthalmic Product Development: Reduce Risks, Mitigate Failure & Drive Timelines in a Competitive Market. ON drug Delivery Magazine. 2014 Apr(48):32-5. 9. Andrews GP, Laverty TP, Jones DS. Mucoadhesive polymeric platforms for controlled drug delivery. European Journal of Pharmaceutics and Biopharmaceutics. 2009 Mar 1;71(3):505-18. 10. Alany RG, Rades T, Nicoll J, Tucker IG, Davies NM. W/O microemulsions for ocular delivery: evaluation of ocular irritation and precorneal retention. Journal of controlled release. 2006 Mar 10;111(1-2):145-52. 11. Chang JN. Ophthalmic Drug Delivery. Handbook of Non-Invasive Drug Delivery Systems: Science and Technology. 2009 Dec 31:165. 12.https://www.google.com/search?safe=active&rlz=1C1SQJL_enIN930IN930&sxsrf=ALeKk020tT3yEszwYqmWE0ZAOa2fj800lQ:1615755446735&source=univ&tbm=isch&q=flow+chart+of+ROUTES+OF+ANTERIOR+OPHTHALMIC+DRUG+DELIVERY&sa=X&ved=2ahUKEwjN1siL1rDvAhWHyzgGHY87CdQQ7Al6BAgBEAs&biw=1242&bih=545#imgrc=Zk9UBCpI8XPocM 13. Idrees F, Vaideanu D, Fraser SG, Sowden JC, Khaw PT. A review of anterior segment dysgeneses. Survey of ophthalmology. 2006 May 1;51(3):213-31. 14. Geroski DH, Edelhauser HF. Drug delivery for posterior segment eye disease. Investigative ophthalmology & visual science. 2000 Apr 1;41(5):961-4. 15. Abdulrazik M, Behar-Cohen F, Benita S. 24 Drug Delivery Systems for Enhanced Ocular Absorption. Enhancement in drug delivery. 2007. 16. Abdulrazik M, Behar-Cohen F, Benita S. 24 Drug Delivery Systems for Enhanced Ocular Absorption. Enhancement in drug delivery. 2007. 17. Barar J, Asadi M, Mortazavi-Tabatabaei SA, Omidi Y. Ocular drug delivery; impact of in vitro cell culture models. Journal of ophthalmic & vision research. 2009 Oct;4(4):238. 18. Mishima S, Gasset A, Klyce SD, Baum JL. Determination of tear volume and tear flow. Investigative Ophthalmology & Visual Science. 1966 Jun 1;5(3):264-76. 19. Bachu RD, Chowdhury P, Al-Saedi ZH, Karla PK, Boddu SH. Ocular drug delivery barriers—role of nanocarriers in the treatment of anterior segment ocular diseases. Pharmaceutics. 2018 Mar;10(1):28. 20. Kuno N, Fujii S. Recent advances in ocular drug delivery systems. Polymers. 2011 Mar;3(1):193-221. 21. Mannermaa E, Vellonen KS, Urtti A. Drug transport in corneal epithelium and blood–retina barrier: emerging role of transporters in ocular pharmacokinetics. Advanced drug delivery reviews. 2006 Nov 15;58(11):1136-63. 22. Lee SJ, He W, Robinson SB, Robinson MR, Csaky KG, Kim H. Evaluation of clearance mechanisms with transscleral drug delivery. Investigative ophthalmology & visual science. 2010 Oct 1;51(10):5205-12. 23. Cunha-Vaz J. The blood-ocular barriers. Survey of ophthalmology. 1979 Mar 1;23(5):279-96. 24. Schnitzer JE, Liu J, Oh P. Endothelial Caveolae Have the Molecular Transport Machinery for Vesicle Budding, Docking, and Fusion Including VAMP, NSF, SNAP, Annexins, and GTPases∗. Journal of Biological Chemistry. 1995 Jun 16;270(24):14399-404. 25. Kuno N, Fujii S. Recent advances in ocular drug delivery systems. Polymers. 2011 Mar;3(1):193-221. 26. ClinicalTrials.gov Study to compare differing dosing regimens of ISV-303 (Bromfenac in DuraSite) to xibrom and vehicle in post cataract surgery volunteers. Available online: http://clinicaltrials.gov/ct2/show/NCT01190878?term=ISV-303&rank=1 (accessed on 18 October 2010). 27. Peterson RC, Wolffsohn JS, Nick J, Winterton L, Lally J. Clinical performance of daily disposable soft contact lenses using sustained release technology. Contact Lens and Anterior Eye. 2006 Jul 1;29(3):127-34. 28. Sano K, Tokoro T, Imai Y. A new drug delivery system utilizing piggyback contact lenses. Acta Ophthalmologica Scandinavica. 1996 Jun;74(3):243-8. 29. Sato T, Uchida R, Tanigawa H, Uno K, Murakami A. Application of polymer gels containing side‐chain phosphate groups to drug‐delivery contact lenses. Journal of applied polymer science. 2005 Oct 15;98(2):731-5. 30. Danion A, Brochu H, Martin Y, Vermette P. Fabrication and characterization of contact lenses bearing surface‐immobilized layers of intact liposomes. Journal of Biomedical Materials Research Part A. 2007 Jul;82(1):41-51. 31. Uchida R, Sato T, Tanigawa H, Uno K. Azulene incorporation and release by hydrogel containing methacrylamide propyltrimenthylammonium chloride, and its application to soft contact lens. Journal of Controlled Release. 2003 Oct 30;92(3):259-64. 32. Hiratani H, Alvarez-Lorenzo C. Timolol uptake and release by imprinted soft contact lenses made of N, N-diethylacrylamide and methacrylic acid. Journal of Controlled Release. 2002 Oct 4;83(2):223-30. 33. Jahangir MA, Imam SS, Gilani SJ. Polymeric hydrogels for contact lens-based ophthalmic drug delivery systems. InOrganic Materials as Smart Nanocarriers for Drug Delivery 2018 Jan 1 (pp. 177-208). William Andrew Publishing. 34. Vadnere M, Amidon G, Lindenbaum S, Haslam JL. Thermodynamic studies on the gel-sol transition of some pluronic polyols. International journal of pharmaceutics. 1984 Dec 1;22(2-3):207-18. 35. Kuno N, Fujii S. Recent advances in ocular drug delivery systems. Polymers. 2011 Mar;3(1):193-221. 36. Ciolino JB, Dohlman CH, Kohane DS. Contact lenses for drug delivery. InSeminars in ophthalmology 2009 Jan 1 (Vol. 24, No. 3, pp. 156-160). Taylor & Francis. 37. Sepahvandi A, Eskandari M, Moztarzadeh F. Drug delivery systems to the posterior segment of the eye: implants and nanoparticles. BioNanoScience. 2016 Dec;6(4):276-83. 38. Urtti A. Challenges and obstacles of ocular pharmacokinetics and drug delivery. Advanced drug delivery reviews. 2006 Nov 15;58(11):1131-5. 39. Kuno N, Fujii S. Recent advances in ocular drug delivery systems. Polymers. 2011 Mar;3(1):193-221. 40. Pitkänen L, Ruponen M, Nieminen J, Urtti A. Vitreous is a barrier in nonviral gene transfer by cationic lipids and polymers. Pharmaceutical research. 2003 Apr;20(4):576-83. 41. Saettone MF. Effect of different vehicles on ocular kinetics/distribution. Ocular Toxicology. 1995:109-20. 42. Jaffe GJ, Ben-nun J, Guo H, Dunn JP, Ashton P. Fluocinolone acetonide sustained drug delivery device to treat severe uveitis. Ophthalmology. 2000 Nov 1;107(11):2024-33. 43. Jaffe GJ, McCallum RM, Branchaud B, Skalak C, Butuner Z, Ashton P. Long-term follow-up results of a pilot trial of a fluocinolone acetonide implant to treat posterior uveitis. Ophthalmology. 2005 Jul 1;112(7):1192-8. 44. Jaffe GJ, Martin D, Callanan D, Pearson PA, Levy B, Comstock T, Fluocinolone Acetonide Uveitis Study Group. Fluocinolone acetonide implant (Retisert) for noninfectious posterior uveitis: thirty-four–week results of a multicenter randomized clinical study. Ophthalmology. 2006 Jun 1;113(6):1020-7. 45. Kuno N, Fujii S. Recent advances in ocular drug delivery systems. Polymers. 2011 Mar;3(1):193-221. 46. Solinís MÁ, del Pozo-Rodríguez A, Apaolaza PS, Rodríguez-Gascón A. Treatment of ocular disorders by gene therapy. European Journal of Pharmaceutics and Biopharmaceutics. 2015 Sep 1;95:331-42. 47. Peynshaert K, Devoldere J, De Smedt SC, Remaut K. In vitro and ex vivo models to study drug delivery barriers in the posterior segment of the eye. Advanced drug delivery reviews. 2018 Feb 15;126:44-57. 48. Huang D, Chen YS, Rupenthal ID. Overcoming ocular drug delivery barriers through the use of physical forces. Advanced drug delivery reviews. 2018 Feb 15;126:96-112. 49. Himmelstein KJ, Guvenir I, Patton TF. Preliminary pharmacokinetic model of pilocarpine uptake and distribution in the eye. Journal of pharmaceutical sciences. 1978 May 1;67(5):603-6. 50. Lee VL. Precorneal, corneal, and postcorneal factors. Drugs and the pharmaceutical sciences. 1993;58:59-81. 51. Monem AS, Ali FM, Ismail MW. Prolonged effect of liposomes encapsulating pilocarpine HCl in normal and glaucomatous rabbits. International journal of pharmaceutics. 2000 Mar 30;198(1):29-38. 52. Tangri P, Khurana S. Basics of ocular drug delivery systems. International Journal of Research in Pharmaceutical and Biomedical Sciences. 2011 Oct;2(4):1541-52. 53. Hui HW, Robinson JR. Ocular delivery of progesterone using a bioadhesive polymer. International journal of pharmaceutics. 1985 Oct 1;26(3):203-13. 54. Mishra GP, Bagui M, Tamboli V, Mitra AK. Recent applications of liposomes in ophthalmic drug delivery. Journal of drug delivery. 2011;2011. 55. Noomwong P, Ratanasak W, Polnok A, Sarisuta N. Development of acyclovir-loaded bovine serum albumin nanoparticles for ocular drug delivery. International Journal of Drug Delivery. 2011 Oct 1;3(4):669. 56. Dhyani A, Kumar G. A New Vision To Eye: Novel Ocular Drug Delivery System. Pharmacophores. 2019 Apr 1;10(1):13-20. 57. Wagh VD, Apar DU. Cyclosporine a loaded PLGA nanoparticles for dry eye disease: in vitro characterization studies. Journal of Nanotechnology. 2014 Jan 1;2014. 58. Warsi MH, Anwar M, Garg V, Jain GK, Talegaonkar S, Ahmad FJ, Khar RK. Dorzolamide-loaded PLGA/vitamin E TPGS nanoparticles for glaucoma therapy: Pharmacoscintigraphy study and evaluation of extended ocular hypotensive effect in rabbits. Colloids and Surfaces B: Biointerfaces. 2014 Oct 1;122:423-31. 59. Phogat A, Kumar MS, Mahadevan N. Simultaneous estimation of brimonidine tartrate and timolol maleate in nanoparticles formulation by RP-HPLC. Int J Recent Adv Pharm Res. 2011;3:31-6. 60. Madan M, Bajaj A, Lewis S, Udupa N, Baig JA. In situ forming polymeric drug delivery systems. Indian journal of pharmaceutical sciences. 2009 May;71(3):242. 61. Wu Y, Liu Y, Li X, Kebebe D, Zhang B, Ren J, Lu J, Li J, Du S, Liu Z. Research progress of in-situ gelling ophthalmic drug delivery system. Asian journal of pharmaceutical sciences. 2019 Jan 1;14(1):1-5. 62. Middleton DL, Robinson JR. Design and evaluation of an ocular bioadhesive delivery system. STP Pharma sciences. 1991;1(3):200-6. 63. Godbey RE, Green K, Hull DS. Influence of cetylpyridinium chloride on corneal permeability to penicillin. Journal of pharmaceutical sciences. 1979 Sep 1;68(9):1176-8. 64. Vyas SP, Mysore N, Jaitely V, Venkatesan N. Discoidal niosome based controlled ocular delivery of timolol maleate. Die Pharmazie. 1998 Jul 1;53(7):466-9. 65. Rathore KS, Nema RK, Sisodia SS. An overview and advancement in ocular drug delivery systems. International Journal of Pharmaceutical sciences and research. 2010 Oct 1;1(10):11. 66. Rathore KS, Nema RK. An insight into ophthalmic drug delivery system. Int J Pharm Sci Drug Res. 2009 Apr;1(1):1-5. 67. Tangri P, Khurana S. Basics of ocular drug delivery systems. International Journal of Research in Pharmaceutical and Biomedical Sciences. 2011 Oct;2(4):1541-52. 68. Karthikeyan D, Bhowmick M, Pandey VP, Nandhakumar J, Sengottuvelu S, Sonkar S, Sivakumar T. The concept of ocular inserts as drug delivery systems: An overview. Asian Journal of Pharmaceutics (AJP): Free full text articles from Asian J Pharm. 2014 Aug 25;2(4). 69. Karthikeyan D, Bhowmick M, Pandey VP, Nandhakumar J, Sengottuvelu S, Sonkar S, Sivakumar T. The concept of ocular inserts as drug delivery systems: An overview. Asian Journal of Pharmaceutics (AJP): Free full text articles from Asian J Pharm. 2014 Aug 25;2(4). 70. Tangri P, Khurana S. Basics of ocular drug delivery systems. International Journal of Research in Pharmaceutical and Biomedical Sciences. 2011 Oct;2(4):1541-52. 71. Prausnitz MR, Noonan JS. Permeability of cornea, sclera, and conjunctiva: a literature analysis for drug delivery to the eye. Journal of pharmaceutical sciences. 1998 Dec;87(12):1479-88. 72. Agarwal P, Rupenthal ID. In vitro and ex vivo corneal penetration and absorption models. Drug delivery and translational research. 2016 Dec;6(6):634-47. 73.Jiao J. Polyoxyethylated nonionic surfactants and their applications in topical ocular drug delivery. Advanced drug delivery reviews. 2008 Dec 14;60(15):1663-73. 74. Grimaudo MA, Pescina S, Padula C, Santi P, Concheiro A, Alvarez-Lorenzo C, Nicoli S. Poloxamer 407/TPGS mixed micelles as promising carriers for cyclosporine ocular delivery. Molecular pharmaceutics. 2018 Feb 5;15(2):571-84. 75. Prausnitz MR, Noonan JS. Permeability of cornea, sclera, and conjunctiva: a literature analysis for drug delivery to the eye. Journal of pharmaceutical sciences. 1998 Dec;87(12):1479-88. 76. Agarwal P, Rupenthal ID. In vitro and ex vivo corneal penetration and absorption models. Drug delivery and translational research. 2016 Dec;6(6):634-47. 77.Jiao J. Polyoxyethylated nonionic surfactants and their applications in topical ocular drug delivery. Advanced drug delivery reviews. 2008 Dec 14;60(15):1663-73. 78. Grimaudo MA, Pescina S, Padula C, Santi P, Concheiro A, Alvarez-Lorenzo C, Nicoli S. Poloxamer 407/TPGS mixed micelles as promising carriers for cyclosporine ocular delivery. Molecular pharmaceutics. 2018 Feb 5;15(2):571-84. 79. Kaur IP, Smitha R. Penetration enhancers and ocular bioadhesives: two new avenues for ophthalmic drug delivery. Drug development and industrial pharmacy. 2002 Jan 1;28(4):353-69. 80. Y. Kanaiand, and M. A. Hediger. The glutamate/neutral amino acid transporter family SLC1: molecular, physiological and pharmacological aspects. Pflugers. Arch. 447:469–479 (2004) doi:10.1007/s00424-003-1146-4. 81. B. S. Anandand, and A. K. Mitra. Mechanism of corneal permeation of L-valyl ester of acyclovir: targeting the oligopeptide transporter on the rabbit cornea. Pharm. Res. 19:1194–1202 (2002) doi:10.1023/A:1019806411610. 82. Y. Fukasawa, H. Segawa, J. Y. Kim, A. Chairoungdua, D. K. Kim, H. Matsuo, S. H. Cha, H. Endou, and Y. Kanai. Identification and characterization of a Na(+)-independent neutral amino acid transporter that associates with the 4F2 heavy chain and exhibits substrate selectivity for small neutral D- and L-amino acids. J. Biol. Chem. 275:9690–9698 (2000) doi:10.1074/jbc.275.13.9690 83. F. Verrey, C. Meier, G. Rossier, and L. C. Kuhn. Glycoproteinassociated amino acid exchangers: broadening the range of transport specificity. Pflugers. Arch. 440:503–512 (2000). 84. B. Jain-Vakkalagadda, D. Pal, S. Gunda, Y. Nashed, V. Ganapathy, and A. K. Mitra. Identification of a Na+-dependent cationic and neutral amino acid transporter, B(0,+), in human and rabbit cornea. Mol. Pharm. 1:338–346 (2004) doi:10.1021/ mp0499499. 85. M. E. Ganapathyand, and V. Ganapathy. Amino acid transporter ATB0,+as a delivery system for drugs and prodrugs. Curr. Drug Targets Immune. Endocr. Metabol. Disord. 5:357– 364 (2005) doi:10.2174/156800805774912953. 86. Le Bourlais C, Acar L, Zia H, Sado PA, Needham T, Leverge R. Ophthalmic drug delivery systems—recent advances. Progress in retinal and eye research. 1998 Jan 1;17(1):33-58. 87. Winkler BS. Glycolytic and oxidative metabolism in relation to retinal function. The Journal of general physiology. 1981 Jun;77(6):667-92. 88. Senanayake P, Calabro A, Hu JG, Bonilha VL, Darr A, Bok D, Hollyfield JG (2006) Glucose utilization by the retinal pigment epithelium: evidence for rapid uptake and storage in glycogen, followed by glycogen utilization. Exp Eye Res 83:235–246. 89. Jwala J. Sustained release nanoparticles containing acyclovir prodrugs for ocular herpes simplex keratitis and characterization of folate transport proteins in a corneal epithelial cell line. University of Missouri-Kansas City; 2011.70. Mannermaa E, Vellonen KS, Urtti A (2006) Drug transport in corneal epithelium and blood-retina barrier: emerging role of transporters in ocular pharmacokinetics. Adv Drug Deliv Rev 58:1136–1163. 90. Anand BS, Mitra AK. Mechanism of corneal permeation of L-valyl ester of acyclovir: targeting the oligopeptide transporter on the rabbit cornea. Pharmaceutical research. 2002 Aug;19(8):1194-202. 91. Wang A, Wu S, Tao Z, Li X, Lv K, Ma C, Li Y, Li L, Liu M. Design, synthesis, and anti-HBV activity of new bis (l-amino acid) ester tenofovir prodrugs. ACS medicinal chemistry letters. 2019 May 16;10(6):991-5. 92. Kompella UB, Kadam RS, Lee VH. Recent advances in ophthalmic drug delivery. Therapeutic delivery. 2010 Sep;1(3):435-56. 93. Maharjan P, Cho KH, Maharjan A, Shin MC, Moon C, Min KA. Pharmaceutical challenges and perspectives in developing ophthalmic drug formulations. Journal of Pharmaceutical Investigation. 2019 Mar;49(2):215-28.

Refbacks

  • There are currently no refbacks.