文章编号:1674-2974(2018)05-0085-09

盆地型长周期地震动的判别准则*

刘烁宇1,李英民1,2†

(1. 重庆大学 土木工程学院,重庆 400045; 2. 山地城镇建设与新技术教育部重点实验室,重庆 400045)

摘 要:为了筛选出盆地内超高层结构抗震设计所需的盆地型长周期地震动(简称为长 周期地震动)验算波,总结了长周期地震动的形成机理,分析了长周期地震动中面波的卓越 性,提出了截取由面波主导的地震动尾波的方法,通过基于尾波特性的统计分析得到了长周 期地震动的判别准则.结果表明:沉积盆地边界所激发的面波在盆地内传播、叠加以及依频 率放大是长周期地震动的主要形成机理;长周期地震动中由面波主导的尾波段对长周期结 构响应起控制作用;长周期地震动判别准则宜定为:速度反应谱卓越周期大于2 s,且截取出 的尾波与原始波在速度反应谱卓越周期处的谱幅值比大于 85%.

关键词:长周期地震动;形成机理;判别准则;面波;地震动输入;反应谱卓越周期
 中图分类号:TU973.212
 文献标志码:A

Discriminant Criterion of Long-period Ground Motion in Basin

LIU Shuoyu¹, LI Yingmin^{1,2†}

(1. School of Civil Engineering, Chongqing University, Chongqing 400045, China;

2. Key Laboratory of New Technique for Construction of Cities in Mountain Area, Chongqing 400045, China)

Abstract: To screen out the basin long-period ground motion inputs, which could be used for the seismic design of supper high-rise buildings in basin, the formation mechanism of long-period ground motions was explained. Then, the dominance of surface wave in long-period ground motion was analyzed, and an approach to extract the coda waves of ground motions, which were dominated by surface waves, was put forward. Finally, the discriminant criterion of long-period ground motion was proposed through statistical analysis based on the characteristics of coda waves. The results demonstrate that the propagation, overlapping, and frequency-dependent amplification of the surface waves are generated by conversion of body waves at the boundaries of deep sedimentary basins, and plains are the main formation mechanism of long-period ground motions. The surface wave components in the coda waves of long-period ground motions are responsible for the maximum responses of long-period structures, such as supper high-rise buildings. The discriminant criterion of long-period ground motion is concluded that: the predominant period of velocity response spectrum (T_p) of ground motion is larger than 2 s, in addition, the ratio of the amplitude in the predominant period of velocity response spectrum for the surface waves and original wave is greater than 85%.

* 收稿日期:2017-04-28

基金项目:国家自然科学基金资助项目(51478068,51478067), National Natural Science Foundation of China(51478068,51478067) 作者简介:刘烁宇(1988—),男,重庆人,重庆大学博士研究生

[†]通讯联系人, E-mail: liyingmin@cqu. edu. cn

Key words: long period ground motion; formation mechanisms; discriminant criterion; surface wave; ground motion inputs; predominant period of response spectrum

近年来,特别是在2011年日本311地震(矩震 级 9.0 Mw)中,距震中几百公里的关东盆地以及大 阪盆地内的超高层建筑在盆地型长周期地震动(本 文中简称为长周期地震动)作用下出现了比较明显 的长时间大幅值晃动,非结构构件破坏严重,居住者 产生极大恐慌,震后修复费用较高[1-3].随着我国超 高层建筑等长周期结构的大量建成,长周期结构在 长周期地震动下共振进而产生较严重破坏已成为重 要安全隐患[4].其中,2008年汶川地震时,远离震中 的陕西渭河盆地、山西太原、江苏、台湾等地的超高 层结构出现了较大的响应和轻微破坏[4-6].因此,超 高层结构应考虑长周期地震动的影响,但目前的地 震动输入并不能较好地体现长周期地震动的特性. 基于长周期地震动形成机理及其特性,对已有长周 期地震动记录进行定量统计分析,进而得到长周期 地震动判别准则,是形成超高层结构抗震设计所需 长周期验算波的基础.

国内外学者对长周期地震动的形成机理及判别 准则进行了研究. Koketsu 等^[7]、Furumura 等^[8]、 Maeda 等^[9]、Sato 等^[10]、Yoshimoto 等^[11]分析了近 年来日本的关东、大阪等盆地出现的长周期地震动, 指出了大震级地震和大型深厚沉积盆地是形成面波 主导的长周期地震动的基础. 日本国土交通省气象 厅(JMA)^[12]基于地震时大型盆地内高层结构中居 住者感受及非结构构件损坏情况,将绝对速度反应 谱 S_{va} (ξ =5%)在周期[1.6 s,7.8 s]内谱峰值超过5 cm/s 的地震记录判别为长周期地震动记录;李雪红 等^[13]基于 EMD 分解,给出了体现地震波中低频成 分卓越性的参数,用于长周期地震动的判别.

上述研究虽然对形成长周期地震动的主要条件 进行了分析,但并未对形成机理进行系统总结.日本 国土交通省气象厅(JMA)^[12]对长周期地震动的判 别需预先判断地震动记录是否来源于盆地内,且仅 以反应谱峰值大小来判别长周期地震动并不能完全 体现长周期地震动的特性.李雪红等^[13]主要采用信 号处理方法从长周期分量角度来判别长周期地震 动,并未考虑长周期地震动的形成机理,其判别出的 长周期地震动中混入了近断层脉冲型地震动,即不 能分离出本文所需判别的长周期地震动(注:近断层 脉冲型地震动的卓越周期虽然较长,但并不是本文 需要判别的盆地型长周期地震动).基于形成机理的 判别准则能够筛选出体现长周期地震动非平稳特性 的样本.因此,本文系统总结长周期地震动的形成机 理;定量分析长周期地震动记录中的面波特性以及 面波的卓越性;基于地震波频散特性提出了截取由 面波主导的地震动尾波的方法,并对比普通地震动 记录与长周期地震动记录中所截取尾波的卓越性; 最后基于尾波的卓越性,给出长周期地震动的判别 准则,并对比分析各判别准则的判别结果.

1 长周期地震动形成机理

从历次出现的长周期地震动中可发现,长周期 地震动记录的核心构成部分是到达时刻晚于体波、 持时较长、位移幅值相对较大、频率非平稳的长周期 面波^[7-8].能孕育出上述面波的震源、传播路径以及 场地则是形成长周期地震动的必要条件.

1.1 震源

本文所判别的长周期地震动(即盆地型长周期 地震动),震源均位于盆地之外.大型俯冲带地震以 及中大型板壳地震可引起沉积盆地出现长周期地震 动^[2,7-8,14].当震源距盆地边界较近时,震源深度越 浅、断层倾角越大、断层破裂速度越小,则越容易在 盆地内形成幅值较大的长周期地震动;而当震源距 盆地边界较远时,震源深度及断层特性对长周期地 震动特性的影响减小,远距离传播容易在盆地内形 成长持时的长周期地震动.且震级越大时,长周期地 震动中的长周期成分越丰富^[15].

1.2 盆地效应

具有深厚沉积层的大型盆地是孕育长周期地震动的必要条件.由盆地的边界波导区域激发、汇聚,并由软弱沉积层放大的大幅值、长持时面波是长周期地震动的核心构成部分.

1.2.1 盆地面波的激发

体波入射到地面的角度超过临界反射角后,会 在地表转换成视速度小于体波的面波(Rayleigh 波、 Love 波). 地壳中剪切波速随深度增大以及盆地侧 面边界倾斜的特性,会改变体波传播方向,进而引起 体波斜入射到地面形成面波(如图 1 所示).

1.2.2 盆地边缘效应

边缘效应机理如图 2 所示.由盆地边界波导区 域产生的面波向盆地中央传播时,可与盆地边缘垂 直入射到地表且相位和频率与面波接近的体波相 遇,进而叠加成为幅值成倍放大的地震动.边缘效应 的幅值放大只发生在盆地边缘,是因为面波传播速 度较慢,当面波到达盆地中央时,与之同相位同频率 的垂直入射体波已经向下反射.

1.2.3 盆地聚焦效应

盆地基底特殊的结构形状有可能引起体波聚焦 于地表某点,但体波聚焦区域范围较小,且出现概率 不大^[16].而面波在盆地内的汇聚则较常见.首先,盆 地边界波导区域将体波转换为面波,向盆地中央传 播.来自盆地距离震源近端的边界和远端的边界产生 的面波在盆地中央附近区域叠加而放大(如图2所 示).其次,如图3所示,从地震波传播的俯视视角来 看,由于面波速度小于体波,盆地边界处体波转换成 面波后,波前曲率变小,甚至为负.因此,盆地边界可 以消除面波的几何扩散衰减,甚至使面波聚焦^[17].

1.2.4 盆地内面波传播特性

面波在沉积盆地内的传播主要有三个特点.首 先,周期越长的面波传播速度越快,进而产生频散现 象^[18].频散可使得地震动信号时域上的频率非平稳 特性更明显;其次,波长小于等于盆地深度的面波会 陷入在盆地内来回震荡,且震荡过程中会出现面波 叠加而使地震动幅值放大;最后,短周期面波的衰减 由松散、品质因子低的浅表土层决定,因此短周期面 波的非弹性衰减以及散射远大于长周期面波,这使 得地震动中长周期面波成分更显著.

图 3 盆地边界处体波转换成面波的波前平面示意图 Fig. 3 Schematic plan view of the wavefronts for a body wave from a point source converting to a surface wave at the edge of a basin

1.3 场地土层速度结构

从历次长周期地震动发生场地可看出,土层速 度结构对长周期地震动中面波的幅值、频谱特性起 到了控制作用.其中,深层土层速度结构对长周期地 震动的影响更大.Yoshimoto等^[11]利用面波介质响 应曲线分析了日本关东盆地的场地卓越周期,指出 给定场地面波介质响应曲线的拐点周期与该场地所 记录到的长周期地震动卓越周期较为一致.而拐点 周期与场地速度结构相关,且随着场地深层土层剪 切波速的减小以及厚度的增大而延长.

2 长周期地震动面波特性分析

从上述对长周期地震动形成机理的定性分析可知,长周期面波是长周期地震动的主要构成部分.因此,更加深入分析长周期地震动中面波的特性以及对结构响应的贡献程度,可为长周期地震动判别指标的选择提供依据.本节以集集地震 6.2级余震在 滨海盆地平原中 CHY025 台站记录的长周期地震动(面波传播方向(R向)分量,简称 CHY025_R 波) 为例,基于 Rayleigh 面波特性,对面波粒子运动,以 及面波主导的尾波段对结构响应的贡献程度进行定 量分析.

2.1 基于粒子运动的面波特性分析

通过最新的 Rayleigh 面波识别方法^[19],可求得 面波传播方向(R向)为正北方顺时针转动 297°.结 合竖向以及 R向位移分量,可得到地震波前进方向 竖向平面的粒子运动,进而观察 Rayleigh 面波的到 达时刻以及持续时长. Rayleigh 面波一般以逆进椭 圆形式传播,当沉积层较厚且地震速度极慢时,可能 会以正进椭圆形式传播^[20].集集地震滨海盆地平原 中出现了大量以正进椭圆方式传播的 Rayleigh 面 波^[14]. 而体波速度比面波大,因此可将粒子运动开 始具有明显正进或逆进椭圆特性的时刻作为面波到 达时刻. 如图 4 所示,CHY025_R 波在 35~38 s 出 现了较明显的大幅值正进椭圆粒子运动,而在 48 ~75 s 出现了幅值快速衰减的逆进椭圆粒子运动. 可看出,35 s 以后 CHY025_R 波以面波为主,特别 是 35~48 s 出现的大幅值面波较为卓越. 可将 35 s 以前的波段称为体波段,将 35 s 以后的波段称为面 波段.

图 4 CHY025 台站面波传播方向(R 向)竖直平面粒 子运动(U-D 为竖直方向运动,F-A 为面波传播方向运动) Fig. 4 Particle motion of CHY025 Station in vertical plane of propagation direction of surface wave(U-D represents vertical direction, F-A represents R direction)

2.2 面波主导的尾波段对结构响应的影响

面波传播速度较体波慢,因此地震波中的面波 成分一般出现在尾波段中.在地震学领域,常利用尾 波段进行面波分析以及场地特性分析,而对于获取 尾波段,一般根据经验直接截取体波到达时刻之后 的某一时刻到地震波结束的波段^[21-22].Wang^[14]根 据经验粗略判断出体波与面波的分界时刻,对比了 体波段、面波段(尾波段),以及原始地震波的速度反 应谱.

考虑到利用截取尾波段进行结构响应分析可能 会失真,因此,本节对原始波(CHY025 R 波)与所 截取尾波段之间的波形和结构响应时程进行对比 (如图 5 所示).其中,直接截取加速度时程会使得尾 波段初始幅值非零,进而引起尾波段速度及位移时 程出现基线漂移,因此对截取出的加速度尾波段重 新进行基线校正.从图 5(a)(b)可看出,尾波段的速 度时程与原始波基本吻合,尾波段的位移时程与原 始波略有差别,但总体较为接近.从图 5(c)可看出, 周期为4 s(原始波卓越周期)的 SDOF 体系在尾波 段以及原始波作用下的响应时程基本吻合.由于尾 波段未计入体波段结束时刻所遗留的结构速度和位 移所引起的自由振动,使得尾波段作用下的结构响 应幅值较原始波作用下略小,综上,截取出的尾波段 通过基线校正后能够保留原始波特性,可用于反应 谱对比分析.

速度反应谱能更显著地体现长周期地震动在工 程范畴的长周期段(周期从几秒到 10 s)的特性,且 日本已采用速度反应谱对超高层结构进行抗震设 计.因此,为进一步考察长周期面波在长周期地震动 中的卓越性,以及对结构响应的贡献程度,可对比原 始波、截取体波段,以及截取面波段(尾波段)的速度 反应谱(*ξ*=2%)谱形,如图 6 所示.

different phases in CHY025_R

从图 6 可看出,原始波和面波段的速度反应谱 相差不大,而原始波与体波段的速度反应谱在卓越 周期附近相差较大.由此可推论,面波是长周期地震 动的主要构成部分,面波主导的尾波段对长周期结 构响应起到了控制作用.

3 普通地震动记录与长周期地震动记录中 尾波卓越性对比

从上述分析可知,丰富的面波是长周期地震动 的主要特点,且面波对长周期地震动作用下结构的 响应起控制作用.而提取面波最简便可行的方法就 是截取由面波主导的尾波段.确定长周期地震动判 别准则的指标,可基于普通地震波与长周期地震波 中尾波贡献程度的对比情况.

3.1 基于频散的尾波截取方法

体波传播速度随着周期变长而降低,在地震动 时程上则体现为长周期体波出现时刻较短周期体波 晚,即反频散现象^[23].而面波正频散现象明显,长周 期面波群速度比短周期面波快,且会形成不同窄带 频率的面波波包,在地震动时程上则体现为长周期 面波波包出现时刻较短周期面波波包早.面波的低 速特性使得面波到达时刻滞后于体波.图7所示实 际地震波能体现体波反频散区段、面波正频散区段 以及重叠区段.其中重叠区段包含周期最长的面波 波包,可看作体波部分的结束时刻或者面波部分的 到达时刻.因此,较简便可行的面波提取方法是截取 由面波主导的地震动尾波段^[14].

由上述分析可知,识别出周期最长的面波波包 中心位置则可近似确定面波到达时刻.本文中利用

Fig. 7 Ground motion records possessing positive and negative dispersion obviously

三角频窗函数(中心频率, $f_{c,max} = 1/(2\Delta_{0,max}),\Delta_{0,max}$ 为地震动时程中最大穿零时间间隔)对地震动时程进行滤波处理.得到的波包中心作为面波到达时刻, 把地震动时程在面波到达时刻以后的波段作为面波 主导的尾波段.对于大型沉积盆地,站台与各边界的 距离不同,从不同方向传播过来的同一周期的次生 面波到达时刻不同,因此可能会形成多个中心频率 为 $f_{c,max}$ 的面波波包.本文将第一个到达的完整波包 中心对应时刻作为面波到达时刻 t_M ,并用于截取尾 波段.位移时程能较好地体现出面波,但考虑到地震 动位移时程对基线修正方法较为敏感,速度时程与 位移时程差别不大且更稳定.因此,地震动的速度时 程被用于面波到达时刻识别中.

3.2 尾波卓越性对比

为对比上述方法所截取的由面波主导的尾波段 在各类地震动中的卓越性,本文选取了普通地震动 记录(日本 Kobe 地震 MRG000 波)、近场的长周期 地震动记录(台湾集集地震余震 CHY026 波)以及 远场的长周期地震动记录(日本 311 地震 TKY025 波)进行速度反应谱对比分析.

图8给出了3条实际地震波的速度(VEL)时

程,用 3.1 节方法得到面波到达时刻 t_M,并用虚线 注明 t_M 的位置.

图9给出了3条实际地震动记录的加速度 (ACC)时程,基于图8相应的面波到达时刻*t*_M对加 速度时程进行尾波段截取.可看出,截取起始时刻均 在加速度峰值时刻之后.

图 10 给出了 3 条实际地震动记录的速度反应 谱(*S*_v)和相应尾波段的速度反应谱.可看出,普通地 震波(日本 Kobe 地震 MRG000 波)的卓越周期较 短,其对应尾波段时程的速度反应谱值在卓越周期 (T_p)处与原始记录差距较大;近场的长周期地震动 记录(台湾集集地震余震 CHY026 波)以及远场的 长周期地震动记录(日本 311 地震 TKY025 波)的 卓越周期较长,其尾波段时程的速度反应谱值在卓 越周期处与原始记录基本一致.

图 10 三种类型地震动及其相应尾波的速度反应谱 Fig. 10 Velocity response spectrums of three kinds of ground motions and corresponding extracted codas

因此可推论:普通地震波的卓越频段主要受到 以体波为主的地震波前半段控制;长周期地震动卓 越频段主要受到以面波为主的尾波段控制.

4 基于尾波分析的长周期地震动判别准则

4.1 统计分析及判别准则

近年来,国内外已出现了多次引起超高层等长 周期结构损害较大的长周期地震动.本文选取典型 的长周期地震动记录、近断层脉冲地震动记录以及 普通地震动记录,对比各类地震动记录的卓越周期 (*T*_p),并利用面波到达时刻(*t*_M)进行尾波截取,计 算出所截取尾波与原始波在速度反应谱卓越周期处 的谱幅值比(*α*_{Tp}).基于长周期地震动与其他类型地 震动在 *T*_p 以及 *α*_{Tp}这两个指标上的分界线,定量给 出长周期地震动的判别准则.

本文中从 PEER 任意选取了 80 条非盆地地区 的普通地震动记录,20 条近断层脉冲型地震动记 录.从已有的长周期地震动研究文献中选取了典型 的 65 条长周期地震动记录^[7-10,14,24-25]. 所选取的长 周期地震动信息见表 1.

表1 统计分析所采用的典型长周期地震动信息

Tab. 1 Typical long-period ground motions information

for statistics analysis

地震事件	矩震级 /Mw	类型	台站地质 构造	条数
1999年台湾集集地震	6.2	近场	盆地	15
2003年日本十胜冲地震	8.3	远场	盆地	4
2004年日本伊纪半岛地震	7.4	远场	• 盆地	9
2004年日本新潟县地震	6.6	远场	盆地	5
2007年日本能等半岛地震	6.9	远场	盆地	2
2010 年美国 Mayor-Cucap- ah 地震	7.2	远场	盆地	15
2011年日本 311 地震	9.0	远场	盆地	10
2012 年意大利北部 Emilia 地震	5.9	近场	盆地	5

考虑到近断层脉冲型地震动或某些普通近场地 震动并未形成面波或面波成分极少,通过面波波包 分析可能无法得到合理的面波到达时刻 t_{M} . 经过对 表 1 中典型长周期地震动记录的统计分析,其面波 到达时刻 t_{M} 集中在时域区间[t_{PGA} , t_{PGA} +0.3 D_t]内 (其中, t_{PGA} 为地震波加速度时程峰值时刻, D_t 为地 震波总持时).因此,为了统一尾波截取方法,对于所 有地震波样本,首先利用 3.1 节方法得到 t_{M} ,当 t_{M} 超出[t_{PGA} , t_{PGA} +0.3 D_t]时,则将 t_{PGA} +0.15 D_t 作为 名义面波到达时刻进行尾波截取.

本文基于以上尾波截取标准,对所选 165 条地 震动记录的尾波进行统计分析. 地震动记录速度反 应谱卓越周期处的尾波与原始波谱幅值比(_{αтр})以 及相应的卓越周期(T_p)如图 11 所示.

Fig. 11 Distribution map of α_{TP} and T_p

从图中可看出普通地震动记录的速度反应谱卓 越周期大部分小于 2 s,卓越周期处尾波与原始波的 谱幅值比平均为50%;近断层脉冲型地震动记录的 速度反应谱卓越周期较长,但卓越周期处尾波与原 始波的谱幅值比小于85%;长周期地震动记录的速 度反应谱卓越周期大于2s,卓越周期处尾波与原始 波的谱幅值比主要集中在95%~100%,且绝大部 分大于85%.

因此,本文基于经验统计分析,在判别正确性保 证概率大于 95%的条件下,将盆地内的长周期地震 动的判别准则定为:速度反应谱卓越周期 T_p大于 2 s,且尾波与原始波在速度反应谱卓越周期处的谱幅 值比 α_{TP}大于 85%. 从图 11 可看出,本文所确定的 判别准则能较好地滤除近断层脉冲型地震动以及普 通地震动记录.

4.2 各判别准则对比分析

本节将选取三条不同类型的地震动记录(近断 层脉冲型地震动、普通地震动、长周期地震动),并分 别采用本文尾波判别法、李雪红 β_t 值判别法^[13],以 及日本气象厅的 S_{va}值判别法^[12]得到长周期地震动 判别结果.

其中近断层脉冲型地震动选取台湾集集地震主 震 TCU075 台站记录(简称 TCU075 波)^[14];普通地 震动选取 2008 年汶川地震主震四川茂县 051MXT 台站记录(简称 051MXT 波);长周期地震动选取 2008 年汶川地震主震陕西西安 061XIA 台站记录 (简称 061XIA 波),该台站位于距离震中 500~800 km 的渭河盆地,且台站附近的超高层建筑以及烟 囱的损害较明显,烈度异常^[5].各地震动记录参数见 表 2.

表 2 对比分析所用地震动记录的参数 Tab. 2 Parameters of ground motion records for comparative analysis

地震动	震中距 /km	所处地质 构造	$\frac{\text{PGA}}{(\text{cm} \cdot \text{s}^{-2})}$	记录持时 /s
TCU075 波	20	非盆地	325	89
051MXT 波	86	非盆地	306	296
061XIA 波	630	盆地	52.7	403

图 12 分别给出了台湾 TCU075 波、茂县 051MXT 波以及西安 061XIA 波的速度反应谱和相 应尾波的速度反应谱.可以看出,台湾 TCU075 波 的卓越周期为4.2 s,其相应尾波的速度反应谱值在 4.2 s处与原始记录差距较大,比值为51%.其*T*_p大 于2 s但 α_{TP}小于本文所给出的限值 85%,因此用本 文的尾波判别方法可判定为非长周期地震动;茂县 051MXT 波的卓越周期为 0.5 s,其对应尾波的速度 反应谱值在 0.5 s 处与原始记录差距较大,比值为 46%. T_p和 α_{TP}均小于本文所给出的限值,因此用本 文的尾波判别方法可判定为非长周期地震动;而西 安 061XIA 波的卓越周期为 7.05 s,其对应尾波的 速度反应谱值在 7.05 s 处与原始记录基本一致,比 值约为 100%. T_p和 α_{TP}均大于本文所给出的限值, 因此用本文的尾波判别法可判定为长周期地震动.

当采用基于加权参数 β_l 的李雪红^[13]判别法时, TCU075 波和 061XIA 波的 β_l 值均大于 0.4,被判 定为长周期地震动.当采用结合场地条件和 S_{va}值的 日本气象厅^[12]判别方法时,判别出 061XIA 波为长 周期地震动.三种判别方法的长周期地震动判别结 果见表 3.

表 3 各判别准则对长周期地震动的判别结果 Tab. 3 Results for discriminant of long-period ground motion by using different discriminant criterions

地震动记录	本文方法	李雪红方法	气象厅方法
TCU075 波	不是	是	不是
051MXT 波	不是	不是	不是
061XIA 波	是	是	是

因此可看出,本文的尾波判别法能较好地判别 出长周期地震动(061XIA 波).李雪红方法^[13]所判 别出的长周期地震动中混合了近断层脉冲型地震动 (TCU075 波);日本气象厅^[12]方法虽然判别出了长 周期地震动(061XIA 波),但是该方法在预先不知 061XIA 波是否为盆地波时,无法用于 S_{va}值判别,即该判别方法将失效.

5 结论

本文基于地震动形成机理,并利用尾波分析方法,提出了盆地型长周期地震动(文中均简称为长周 期地震动)的判别准则.(注:其中,近断层脉冲型地 震动的卓越周期虽然较长,但并不是本文需要判别 的盆地型长周期地震动)可得到如下结论:

1)长周期地震动形成机理受震源、盆地中波的 传播、场地速度结构的影响.其中,深厚沉积盆地边 界所激发的低速面波在盆地内的传播、叠加以及依 频率放大是长周期地震动的主要形成机理.

2)长周期地震动中由面波主导的尾波段对长周 期结构响应起控制作用.

3)基于频散的面波到达时刻的确定方法,能较好地分离出由面波主导的尾波段.普通地震动的卓越频段主要受到以体波为主的地震波前段的控制; 而长周期地震动的卓越频段主要受到以面波为主的地震波尾波段的控制.

4)长周期地震动判别准则宜定为:速度反应谱 卓越周期(*T*_p)大于 2 s,且尾波与原始波在速度反 应谱卓越周期处的谱幅值比(*α*_{TP})大于 85%.

5)本文所给出的长周期地震动判别准则能较好 地筛选出符合长周期地震动形成机理的长周期地震 动记录,对形成设计用长周期地震动波库以及长周 期结构基于性能的抗震设计有一定参考意义.

参考文献

- [1] HISADA Y, YAMASHITA T, MURAKAMI M, et al. Seismic response and damage of high-rise buildings in Tokyo, Japan, during the 2011 Tohoku earthquake[C]//Proceedings of the 15th World Conference on Earthquake Engineering. Tokyo: IAEE, 2012: no. 4096.
- [2] TAKEWAKI I, MURAKAMI S, FUJITA K, et al. The 2011 off the Pacific coast of Tohoku earthquake and response of high-rise buildings under long-period ground motions [J]. Soil Dynamics and Earthquake Engineering, 2011, 31(11): 1511-1528.
- [3] TAKEWAKI I, FUJITA K, YOSHITOMI S. Uncertainties in long-period ground motion and its impact on building structural design: case study of the 2011 Tohoku (Japan) earthquake [J]. Engineering Structures, 2013, 49(13): 119-134.
- [4] 肖从真,徐培福,杜义欣,等. 超高层建筑考虑长周期地震影 响的另一种控制方法[J]. 土木工程学报,2014,47(2):12-

XIAO C Z, XU P F, DU Y X, *et al.* Another controlling method on long-period seismic responses for super high-rise buildings [J]. China Civil Engineering Journal, 2014, 47(2): 12-22. (In Chinese)

- [5] 李春光.基于汶川强震资料的渭河盆地场地动力特征研究
 [D].哈尔滨:中国地震局工程力学研究所,2013:1-5.
 LICG. Study on site dynamic characteristics of Weihe basin based on Wenchuan strong earthquake data [D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration, 2013:1-5. (In Chinese)
- LI Q S, ZHI L H, TUAN A Y, et al. Dynamic behavior of Taipei 101 Tower: field measurement and numerical analysis
 [J]. Journal of Structural Engineering, ASCE, 2011, 137 (1): 143-155.
- KOKETSU K, HATAYAMA K, FURUMURA T, et al. Damaging long-period ground motions from the 2003 Mw 8.3 Tokachi-oki, Japan earthquake [J]. Seismological Research Letters, 2005, 76(1): 67-73.
- [8] FURUMURA T, HAYAKAWA T. Anomalous propagation of long-period ground motions recorded in Tokyo during the 23 October 2004 Mw 6. 6 Niigata-ken Chuetsu, Japan, Earthquake [J]. Bulletin of the Seismological Society of America, 2007, 97(3): 863-880.
- [9] MAEDA T, SASATANI T. Long-period ground motions from the 2003 Tokachi-oki earthquake [J]. Journal of Seismology, 2007, 12(2): 243-253.
- [10] SATO K, ASANO K, IWATA T. Long-period ground motion characteristics of the Osaka sedimentary Basin during the 2011 Great Tohoku Earthquake [C]//Proceedings of the 15th World Conference on Earthquake Engineering. Tokyo: IAEE, 2012: no. 4494.
- [11] YOSHIMOTO K, TAKEMURA S. A study on the predominant period of long-period ground motions in the Kanto Basin, Japan [J]. Earth, Planets and Space, 2014, 66(1): 1-7.
- [12] 日本国土交通省気象庁.長周期地震動階級および長周期地 震動階級関連解説表について[EB/OL]//(2013-3-15)[2016-9-1] http://www.data.jma.go.jp/svd/eew/data/ltpgm_explain/kaisetsu.html.

JAPAN METEOROLOGICAL AGENCY. The gradations and relevant explanations of long period ground motion[EB/OL]// (2013-3-15)[2016-9-1]. http://www. data. jma. go. jp/svd/ eew/data/ltpgm_explain/kaisetsu. html. (In Japanese)

[13] 李雪红,王文科,吴迪,等. 长周期地震动的特性分析及界定 方法研究 [J]. 振动工程学报,2014,27(5):685-692.
LI X H, WANG W K, WU D, *et al.* The bounded method and characteristics analysis for long-period ground motions [J]. Journal of Vibration Engineering, 2014, 27(5): 685-692. (In Chinese)

- [14] WANG G Q. Surface waves in the Western Taiwan Coastal Plain from an aftershock of the 1999 Chi-Chi, Taiwan, earthquake [J]. Bulletin of the Seismological Society of America, 2006, 96(3): 821-845.
- [15] AKI K. Scaling law of seismic spectrum [J]. Journal of Geophysical Research, 1967, 72(4): 1217-1231.
- [16] GRAVES R W, PITARKA A, SOMERVILLE P G. Groundmotion amplification in the Santa Monica area: effects of shallow basin-edge structure [J]. Bulletin of the Seismological Society of America, 1998, 88(5): 1224-1242.
- [17] JOYNER W B. Strong motion from surface waves in deep sedimentary basins [J]. Bulletin of the Seismological Society of America, 2000, 90(6B): S95-S112.
- [18] LAY T, WALLACE T C. Modern global seismology [M]. San Diego: Academic Press, 1995: 140-146.
- [19] MEZA-FAJARDO K C, PAPAGEORGIOU A S, SEMBLAT J F. Identification and extraction of surface waves from threecomponent seismograms based on the normalized inner product [J]. Bulletin of the Seismological Society of America, 2015, 105(1): 210-229.
- [20] TANIMOTO T, RIVERA L. Prograde Rayleigh wave particle motion [J]. Geophysical Journal International, 2005, 162(2): 399-405.
- [21] SATOH T, KAWASE H, MATSUSHIMA S. Differences between site characteristics obtained from microtremors, swaves, p-waves, and codas [J]. Bulletin of the Seismological Society of America, 2001, 91(2): 313-334.
- [22] IWAKI A, IWAKI T. Simulation of long-period ground motion in the Osaka sedimentary basin: performance estimation and the basin structure effects [J]. Geophysical Journal International, 2010, 181(2): 1062-1076.
- [23] 徐果明,周蕙兰. 地震学原理[M]. 北京:科学出版社,1982: 173-176.
 XU G M, ZHOU H L. Principles of seismology[M]. Beijing: Science Press, 1982:173-176. (In Chinese)
- [24] ABRAHAM J R, LAI C G, PAPAGEORGIOU A. Basineffects observed during the 2012 Emilia earthquake sequence in Northern Italy[J]. Soil Dynamics and Earthquake Engineering, 2015, 78(15): 230-242.
- [25] HATAYAMA K, KALKAN E. Long-period (3 to 10 s) ground motions in and around the Los Angeles basin during the Mw 7.2 El-Mayor Cucapah Earthquake of April 4, 2010 [C]
 // Proceedings of the 15th World Conference on Earthquake Engineering. Tokyo: IAEE, 2012; no. 770.