文章编号:1674-2474(2017)08-0008-07

DOI:10.16339/j.cnki.hdxbzkb.2017.08.002

微V形槽玻璃元件模压成形有限元应力分析^{*}

余剑武1,李婵1节,尹韶辉1,朱科军2,易成1

(1. 湖南大学 汽车车身先进设计制造国家重点实验室,湖南 长沙 410082;2. 湘潭大学 机械工程学院,湖南 湘潭 411105)

摘 要:针对微 V 形槽结构光学元件在模压后存在应力过大等问题,选取 D-ZK3 型低 温光学玻璃,利用 MSC.Marc 软件建立了微 V 形槽的有限元仿真模型.采用 5 个单元的广 义 Maxwell 模型来描述高温下 D-ZK3 玻璃的粘弹性特性,对 V 形槽结构在不同模压条件 下的填充效果和应力分布进行了仿真研究分析.结果表明:V 槽角度越大,填充效果越好,但 最大应力也越大;模压速度增大将导致应力和模压力的增大;模压温度增大将导致最大应力 的减小.

关键词:光学玻璃;模压成形;微 V 形槽;应力分布;填充效果 中图分类号:TG376.2
文献标志码:A

Finite Element Analysis on Stress of Micro V-groove Components in GMP

YU Jianwu¹, LI Chan^{1†}, YIN Shaohui¹, ZHU Kejun², YI Cheng¹

(1. State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China; 2. College of Mechanical Engineering, Xiangtan University, Xiangtan 411105, China)

Abstract: Due to the large residual stress existing in micro-structure optical elements after GPM, the glass material D-ZK3 with low transition temperature was selected, and a finite element simulation model of micro V-grooves was developed with the software MSC. Marc. Five-element general Maxwell model was used to describe the viscoelastic properties of D-ZK3 glass at high temperatures, and the fill effect and stress distribution of micro V-grooves were simulated and analyzed under different molding parameters. The simulation results show that the maximum stress increases and filling effects are improved when the V-groove angle increases; the higher molding speed leads to higher maximum stress and molding pressure; whereas the maximum stress decreases with the increasing of molding temperature.

Key words: optical glass; glass molding press; micro V-groove; stress distribution; filling effect

微结构光学元件广泛应用于光学成像、信息通信、汽车照明、生物医学、航空航天、卫星导航等领域^[1-2].对于大规模生产微结构光学元件来说,玻璃模压成形是比较有前景的技术.玻璃模压成形技术(Glass Molding Press,GMP),是采用高精度模压模具

在特定的温度、压力条件下,将模具表面形貌复制到 玻璃预制体上,从而直接高效模压出具有最终产品形 状和光学功能的玻璃透镜的加工方法^[3].玻璃模压成 形一般分为4个阶段,分别是加热阶段、模压阶段、退 火阶段以及冷却和脱模阶段,如图1所示.

^{*} 收稿日期:2016-11-23

基金项目:国家自然科学基金资助项目(51275165), National Natural Science Foundation of China(51275165)

作者简介:余剑武(1968—),男,湖南冷水江人,湖南大学教授,博士

[†]通讯联系人, E-mail: greenlaraine@163.com

与传统的玻璃材料去除方法相比,模压成形工 艺可以显著提高生产效率.由于模压时影响模压精 度的因素不确定性,透镜的设计尺寸并不能直接用 于模具的设计,反复修改模具的难度和成本又很 高,因此玻璃模压过程的数值仿真变得尤为重要[4]. 目前,研究人员针对微结构光学元件模压成形的数 值仿真展开了研究.日本的 Shishido 等^[5]针对玻璃 与模仁之间的贴合度进行了研究,发现贴合度随着 玻璃表面张力变化而改变,也会影响元件的复制精 度;台湾国立交通大学的宋岳洲[6]利用差示扫描量 热法和单轴压缩松弛实验,分别取得了玻璃的结构 松弛及应力松弛参数,并将参数代入用 Marc 软件 建立的模型中,仿真结果与实验结果基本一致;中 国科学技术大学的季月良等[7]采用有限元仿真计算 了圆柱透镜以及非球面透镜中的残余应力,并将仿 真分析结果与实验测量计算进行了对比,研究表 明,有限元仿真可以用来研究热压成形透镜中的残 余应力;日本东北大学的 Zhou 等^[8]基于广义 Maxwell 模型对 V 槽进行有限元仿真,研究了模压温 度、模压速度和摩擦系数对 V 型槽成形后最大应力 值的影响;湖南大学的尹韶辉等^[9-10]对非球面透镜 模压成形进行了仿真,结果表明最大应力出现在镜 片的边缘区域,较低的温度和较高的模压速度都会 增大最大残余应力值.

模压成形冷却过程中的温度不均匀,以及玻璃 在高温下的复杂状态变化,导致模压后的光学元件 内部有残余应力,透镜出现双折射现象和折射率改 变的情况.针对目前微结构光学元件在模压过程存 在应力过大等问题,本文采用广义 Maxwell 模型对 微 V 形槽玻璃元件的模压成形过程进行了仿真,分 析了 V 槽角度、模压速度以及模压温度对应力分布 和模压力大小的影响,对今后模压生产过程中工艺 参数的合理选取具有指导意义.

1 光学玻璃的材料性质

玻璃模压需要将玻璃预制体加热至转变温度 T_g以上,此时玻璃表现为粘弹性,同时具有弹性性 质和粘性性质^[11].由于高熔点玻璃的模压温度也相 对较高,将会缩短模具的寿命,所以通常采用低熔 点光学玻璃来模压光学元件.成都光明光电公司开 发的 D-ZK3 型光学玻璃转变温度较低,而且较易获 取,因此本文选用 D-ZK3 型光学玻璃进行研究.

通常用理想固体和理想流体模型组合的方式 来表示粘弹性力学模型,常用的有 Maxwell 模型、 Kelvin 模型以及广义 Maxwell 模型^[12].其中广义 Maxwell 模型是将多个 Maxwell 模型并联而成的, 可以定义多个不同的松弛时间,更适合于用来描述 玻璃粘弹性^[13].如图 2 所示,本文选用广义 Maxwell 模型来表示模压过程中玻璃的粘弹性响应,其方程 如式(1)所示.

图 2 广义 Maxwell 模型 Fig.2 Generalized Maxwell model

广义 Maxwell 模型应力的时间响应可用下式 表示:

$$\sigma(t) = \int_{0}^{t} G(t-\tau) \frac{\mathrm{d}\varepsilon}{\mathrm{d}\tau} \mathrm{d}\tau \tag{1}$$

式中: $\sigma(t)$ 表示应力, $G(t-\tau)$ 可用 Prony 级数计算,如式(2)所示:

$$G(t-\tau) = G_0 \sum_{i=1}^n \omega_i \mathrm{e}^{-\frac{t}{\tau_{ii}}}$$
(2)

式中: ω_i 为各个单元弹性模量的权重系数; τ_{ri} 表示 折减时间(Reduced Time)^[14].

玻璃材料 D-ZK3 的应力松弛参数参考文献 [15],其应力松弛参数如表1 所示.

表 1 D-ZK3 玻璃应力松弛参数 Tab.1 Stress relaxation parameters of D-ZK3

权重系数 ω_i	松弛时间 λ/s
0.238	0.007 0
0.238	0.007 2
0.238	0.007 5
0.238	0.007 8
0.048	0.001 0

2 微 V 形槽元件仿真模型的建立

微槽结构光学元件在模压过程中,由于尺寸过 小,结构复杂,精度要求很高,同时在模压过程中影 响因素较多,所以很难保证模压成形件满足尺寸精 度的要求.为了研究微槽结构光学元件在模压成形 加压阶段的成形效果和应力状态,本文选取 V 形槽 结构作为研究对象,采用 MSC.Marc 软件对玻璃的 模压成形过程的加压阶段进行有限元仿真.工业中 常用的 V 形槽光学元件微槽数量较多,为了简化模 型,本研究以单个 V 形槽结构作为研究对象,并建 立了 2D 模型.

如图 3 所示,微 V 形槽高 5 µm,宽 10 µm,底部 无圆角;玻璃胚料的长为 20 µm,高为 10 µm.本文 将上、下模具视为刚体,不考虑其变形和应力,在仿 真过程中,固定下模,上模以一定的速度向下运动. 参照成都光明光电公司 2013 年更新的玻璃材料库, D-ZK3 型玻璃的材料参数如表 2 所示.

图 3 微 V 形槽结构分析模型 Fig.3 Analysis model of micro V-groove structure

表	2 D-ZK3	3 玻璃的材料	科参数
Tab.2	Material	parameters	of D-ZK3

性能参数	数值
	511
软化点 $S_{ m p}/\mathbb{C}$	605
密度 $ ho/(kg \cdot m^{-3})$	3 700
泊松比 u	0.299
弹性模量 E/MPa	72 700
参考温度 T _R /℃	570
C_1	12.41
C_2	129

为了研究模压时 V 槽角度、模压速度以及模压 温度的影响,本文对微 V 形槽结构模型进行了 3 组 实验,模拟参数如表 3 所示.

	表 3	不同模压	条件下的模	氡拟参数	
Fab.3	The	simulation	parameters	under differen	nt
		moldin	a conditions		

molung conditions				
实验组别	V 槽角度 θ/(°)	模压速度 v/(µm・s ⁻¹)	模压温度 T/℃	
1	30,45,60,90	0.5	570	
2	90	0.4,0.6,0.8, 1.0,1.2	570	
3	90	0.5	560,570,580,590	

由于在模压成形过程中,玻璃材料边缘的变形 和应力较大,所以采用前沿法(Advancing front)的 4节点四边形单元对玻璃预形体进行网格划分.这 种方法是从区域的边界向内部逐渐生成全域网格, 有着较好的疏密过渡和几何形状.模压成形后的压 力和应变分布如图4所示,在模具的两个转角处应 力最大,并由转角处沿横向扩展,这是由于转角处 玻璃内部结构的应变较大,同时又与下模具接触, 受到的挤压力也较大,所以应力是最大的;同时两 侧的玻璃在Y方向受到下模具的限制,挤压力较 大,玻璃在挤压力的作用下向两侧流动,所以应力 也是沿横向扩散.玻璃尖端的应力最小,因为该部分 在Y轴方向没有约束,而且在模压过程中应变较 小,所以内应力较小.

图 4 V 形槽模压结果 (θ =90°,v=0.6 μ m/s,T=570 °C) Fig.4 The mold results of V-groove structure diagram

3 模压应力仿真分析

3.1 V形槽角度对模压应力的影响

V槽角度对于V形槽光学玻璃元件而言,是一 个非常重要的参数,其对模压过程中的成形效果和 应力有着很大的影响.为了研究V槽角度对微槽填 充性和应力的影响,本文的模压温度设置为570℃, 模压深度为8 μ m,模压速度为0.5 μ m/s,分别对角 度为30°,45°,60°和90°的V槽结构进行了数值 仿真.

对不同 V 槽角度进行模压后的填充轮廓如图 5 所示.可以很直观地看出,V 槽角度与玻璃模压成形 后的轮廓有直接关联,随着 V 槽角度的增大,模压 成形后的填充效果越来越好,深度也明显增加.这是因为在模压过程中,玻璃胚料模压到同一深度时,V 槽角度越小,玻璃材料内部结构的变形越严重,受 到的阻力也越大,所以 V 形槽很难再被继续填充. 不同 V 槽角度模压后的应力分布图与图 4 相似,最 大应力都位于转角处.

V-groove angle

图 6 为不同 V 槽角度模压过程中的最大应力 曲线,最大应力随角度的增大而增大.V 形槽角度越 大,与玻璃接触的空间也越大,玻璃越容易流入 V 槽,填充深度也越深,所以转角处玻璃材料的应变 也越大,造成最大应力变大.其中 V 形槽角度由 30° 上升至 45°时,最大应力急剧上升,其主要原因是玻 璃的填充深度从 1.383 μm 增加至 2.839 μm,升高 了 1.05 倍;在 60°和 90°时,填充深度分别增加了 0.21 倍和 0.38 倍;同时由于填充深度的增加,V 槽 中空气的体积被压缩得更小,压强随之增大,造成 模压力变大.所以在 V 槽角度从 30°增大至 45°时, 最大应力剧增.

成形的生产过程中,应合理选择 V 槽角度,使填充 率和应力都满足要求.

3.2 模压速度对模压应力和模压力的影响

玻璃材料在高温下具有粘弹性,模压速度与 玻璃材料的松弛时间直接相关,如果速度过大,玻 璃材料在模压时应力得不到松弛,将导致应力增 加,从而影响玻璃元件的表面形貌和内部结构.本 文分别选取 0.4 μ m/s,0.6 μ m/s,0.8 μ m/s,1.0 μ m/s 以及 1.2 μ m/s 的模压速度来研究模压速度 对模压结果的影响,其它参数如表 3 中第 2 组数据 所示.

图 7 为不同速度下,模压成形过程中的最大应 力曲线,即加压结束后的最大应力.随着模压速度的 不断增大,V形槽玻璃元件的应力也逐渐增加,从 0.2 μm/s 时的 3.196 MPa 增加到 1.2 μm/s 时的 6.48 MPa, 尤其是在模压速度为 1.2 μm/s 时, 最大 应力值急剧上升.这是因为模压速度增大,玻璃内部 材料松弛时间减小,残余应力随松弛时间减小而增 大.图 8 为不同模压速度下的模压力随时间的变化 曲线.从图 8 中可以看出,模压力的最大值随着模压 速度的增加而上升.增大模压速度虽然可以缩短模 压时间,提高光学元件的生产效率,但同时会导致 光学元件应力和模压力的增大,容易产生残余应力 过大和模具使用寿命缩短的情况.因此在模压过程 中,应合理地选择模压速度.由分析可知,模压速度 应该在 0.4 至 1.0 µm/s 之间取值,此时模压应力较 小且平稳.

3.3 模压温度对填充效果和应力分布的影响

玻璃的很多特性都跟温度有密切关联,模压温度是影响成形元件形状和尺寸的十分重要的参数. 通常模压温度选取在屈服温度A,附近,此时玻璃处

ig.8 Molding pressure curve of different pressing velocity

于过渡态,表现为粘弹性,更有利于玻璃的模压成 形.为了研究模压温度对模压结果的影响,本文在 A_t附近选取了 560 ℃,570 ℃,580 ℃和 590 ℃ 4 种模压温度进行数值仿真,其它模压参数如表 3 所示.图 9 为不同模压温度下 V 形槽的应力分 布图.

图 9 不同温度下的应力分布情况 Fig.9 Stress distribution at different temperatures

玻璃在不同温度下的模压成形轮廓如图 10 所示.成形结果与模压速度相似,模压温度对 V 形槽成形轮廓影响不大,这是因为当温度超过屈服温度 A,时,玻璃处于过渡态,偏向于流体态,所以模压后都能得到良好、相似的轮廓.

图 11 为不同温度下玻璃元件模压后的最大应 力曲线.由图 11 可知,模压温度从 560 ℃上升至 570 ℃时,最大应力急剧下降;570 ℃上升至 580 ℃时, 最大应力下降趋势放缓;580 ℃上升至 590 ℃时,最 大应力趋于平稳,并在 590 ℃时有少许的增大.产生 这种现象的原因是:在 560 ℃时,玻璃倾向于固态, 粘度大,流动性能差,所以产生相同应变时,玻璃结 构的应力相对较大;在 570 ℃时,玻璃倾向于液体, 流动性能好,所以模压的最大应力急剧下降;当温

度大于 570 ℃后,玻璃的粘性随温度的增大而减小, 越来越接近于流体的状态,所以最大应力也随之减 小;当温度为 590 ℃时,最大应力有轻微的上升,这 是因为温度过高,玻璃内部的热应力较大的原因.仿 真的模拟结果跟玻璃的理论特性是一致的,直观上 看来,选择高的模压温度更有利于进行模压,然而 在较高的温度下,模具容易发生氧化,这将导致模 具的使用寿命降低.所以在保证玻璃轮廓和应力都 符合设计要求的条件下,模压温度应该尽可能 降低.

3.4 模压多因素综合分析

为了研究多因素对 V 形槽模压过程的综合影 响,本文采用正交法仿真分析 V 槽角度、模压速度 及模压温度对 V 槽模压后的最大应力和填充效果 的影响.本试验是三因素四水平试验,不考虑因素间 的交互作用.因此,选择 L₁₆(4³)作为仿真分析的正 交表,如表 4 所示,其方案与结果如表 5 所示.

	表 4 模压仿真	复分析参数及水	Ŧ
Tab.4	The simulation a	nalysis paramete	ers and level
因素	V 槽角度 /(°)	模压速度/ (μm・s ⁻¹)	模压温度/℃
水平 1	30	0.6	560
水平 2	60	0.8	570
水平 3	90	1.0	580
水平 4	120	1.2	590

表 5 模压仿真分析方案及结果 Tab.5 Molding simulation program and results

序号	V 槽角度 /(°)	模压速度/ (µm・s ⁻¹)	模压温度 /℃	最大应力 /MPa	填充深度 /µm
1	30	0.6	560	12.310	1.883
2	30	0.8	570	3.000	2.185
3	30	1.0	580	3.421	2.370
4	30	1.2	590	3.650	2.445
5	60	0.6	570	4.512	3.864
6	60	0.8	560	14.010	3.617
7	60	1.0	590	3.465	3.864
8	60	1.2	580	3.524	3.865
9	90	0.6	580	1.794	4.377
10	90	0.8	590	1.831	4.389
11	90	1.0	560	19.890	4.527
12	90	1.2	570	4.604	4.532
13	120	0.6	590	1.559	4.879
14	120	0.8	580	1.867	4.881
15	120	1.0	570	4.497	4.888
16	120	1.2	560	19.920	4.898

表6和表7是对V形槽模压后的最大应力和 填充效果仿真结果的极差分析.表6表明各因素对 V形槽模压后的最大应力的影响大小按降序排列 为模压温度、模压速度、V槽角度,为了控制模压后 的最大应力,应选取较小的V槽角度、模压速度以 及较大的模压温度.表7表明各因素对V形槽模压 后填充深度的影响大小按降序排列为V槽角度、模 压速度、模压温度.其中,模压速度和模压温度对填 充深度几乎无影响,相对而言V形槽角度对其影响 较大.

表 6 最大应力的正交极差分析 Tab 6 The orthogonal range analysis of maximum stress

	88	3	
因素	V 槽角度 极差数	模压速度 极差数	模压温度 极差数
水平1	5.595	5.044	16.530
水平 2	6.378	5.177	4.153
水平 3	7.030	7.818	2.652
水平 4	6.961	7.925	2.626
R	1.435	2.881	13.900

表 7 填充深度的正交极差分析				
Tab.7	The orthogonal ran	nge analysis of	filling depth	
因素	V 槽角度 极差数	模压速度 极差数	模压温度 极差数	
水平 1	2.221	3.751	3.731	
水平 2	3.802	3.768	3.867	
水平 3	4.456	3.912	3.873	
水平 4	4.887	3.935	3.895	
R	2.666	0.184	0.164	

通过分析可知,多因素综合分析实验结果与玻 璃材料的性质相符,同时与单一因素分析的结果也 保持一致.通过模压多因素综合分析,对于模压后的 最大应力而言,最佳组合为 V 槽角度 θ =30°,模压 速度 v=0.6 μ m/s,模压温度 T=590 °C;对于填充 深度,最佳组合为 V 槽角度 θ =120°,模压速度 v= 1.2 μ m/s,模压温度 T=590 °C.

4 结 论

本文以微 V 形槽结构的光学元件为研究对象, 选取 D-ZK3 型低温光学玻璃,建立了 V 形槽的二 维仿真模型,对微 V 形槽光学元件模压成形特性进 行了有限元数值仿真分析,结论如下:

1)分析了不同 V 槽角度对模压后的填充效果 和应力最大值的影响,结果表明随着 V 槽角度的增 大,模压成形后的填充效果更好,但应力也随之 增加.

2)通过仿真得到了不同模压速度下V形槽模 压后的最大应力和模压力,分析结果表明最大应力 值和模压力均随着模压速度的增大而增大.合理地 选择模压速度,可提高光学元件的成形质量.

3)分析了在不同模压温度下 V 形槽模压后的 填充效果和最大应力,模压温度对填充效果的影响 不明显;但应力随模压温度的升高而降低.实际应用 中,在保证光学元件轮廓和应力都满足设计要求的 前提下,模压温度应尽可能降低,可提高模具的使 用寿命.

4)综合分析多因素对模压后最大应力和填充 深度的影响,发现模压温度对最大应力影响显著,V 槽角度对填充深度影响最大,同时得到了两组最优 参数组合.通过分析可知,为降低模压后的最大应 力,应尽量选择较小的V槽角度和模压速度及较高 的模压温度.

参考文献

术[J].机械工程学报,2011,47(21):177-185.

ZHAO Qingliang, GUO Bing. Ultraprecision grinding technology of microstructured optical functional molds [J]. Journal of Mechanical Engineering, 2011, 47 (21): 177 - 185. (In Chinese)

- [2] 陈清,范沧,梁兵.玻璃转变时非晶合金微观结构演变的新进展
 [J].湖南大学学报:自然科学版,2014,41(12):17-24.
 CHEN Qing,FAN Cang,LIANG Bing.The evolution of atomic structure during the glass transition[J].Journal of Hunan University :Natural Sciences,2014,41(12):17-24.(In Chinese)
- [3] SU L J, WANG F, HE P, et al. An integrated solution for mold shape modification in precision glass molding to compensate refractive index change and geometric deviation [J]. Optics and Laseers in Engineering, 2014, 53:98-103.
- [4] 余剑武,李婵,谢望清,等.微槽结构光学玻璃元件模压成形数 值仿真分析[J].兵器材料科学与工程,2017,40(1):14-18.
 YU Jianwu, LI Chan, XIE Wangqing, *et al.* Numerical simulation analysis on glass molding press of micro grooves
 [J].Ordnance Material Science and Engineering, 2017, 40(1): 14-18. (In Chinese)
- [5] SHISHIDO Koro, SUGIURA Masao, SHOJI Tetsuo. Aspect of glass softening by master mold[J]. Proceedings of SPIE, 1995, 2536;421-433.
- [6] 宋岳洲.玻璃 V 溝微结构热压成形之有限元素分析[D].台湾: 国立交通大学机械工程学系,2015:30-40.
 SONG Yuezhou, Finite element analysis of V-groove hot embossing process on glass [D]. Taiwan: Department of Mechanical Engineering, National Chiao Tung University, 2015:30-40.(In Chinese)
- [7] 季月良,沈连婠,李木军,等.精密玻璃透镜小型热压成型炉支 承系统优化设计[J].新技术新工艺,2015(1):19-21.
 JI Yueliang,SHEN Lianguan,LI Mujun,*et al*.Optimization design of bracing system of small precision glass lens molding pressing furnace[J]. New Technology & New Process, 2015 (1):19-21.(In Chinese)
- [8] ZHOU T F, YAN J W, MASUDA J, et al. Investigation on the viscoelasticity of optical glass in ultraprecision lens molding process[J]. Journal of Materials Processing Technology, 2009,

209:4484-4489.

- [9] 尹韶辉,靳松,朱科军,等.非球面玻璃透镜模压成形的有限元 应力分析[J].光电工程,2010,37(10):111-115. YIN Shaohui, JIN Song, ZHU Kejun, *et al.* Stress analysis of compression molding of aspherical glass lenses using finite element method[J]. Opto-electronic Engineering, 2010, 37(10): 111-115.(In Chinese)
- [10] 尹韶辉,霍建杰,周天丰,等.小口径非球面透镜模压成形加热 加压参数仿真[J].湖南大学学报:自然科学版,2011,38(1):35 -39.

YIN Shaohui, HUO Jianjie, ZHOU Tianfeng, *et al*. Simulation of the heating and pressing parameters of micro aspherical lens molding process[J].Journal of Hunan University: Natural Sciences, 2011, 38(1):35-39. (In Chinese)

- [11] 周天丰,解加庆,刘洋,等.光学玻璃微沟槽模压成形仿真试验研究[J].光学精密工程,2016,24(10s):446-453.
 ZHOU Tianfeng, XIE Jiaqing, LIU Yang, et al. Simulation and experimental study on the molding process for microgrooveson optical glass [J]. Optics and Precision Engineering, 2016, 24 (10s):446-453. (In Chinese)
- [12] 张小兵,尹韶辉,朱科军,等.基于广义 Maxwell 模型的非球面 光学镜片成型模拟[J].材料导报,2013,27(10):148-152.
 ZHANG Xiaobing, YIN Shaohui,ZHU Kejun,*et al*.Simulation of compression molding aspherical glass lenses based on generalized Maxwell model[J].Materials Review,2013,27(10):148 -152.(In Chinese)
- [13] YIN Shaohui, JIA Hongpeng, ZHANG Guanhua, et al. Review of small aspheric glass lens molding technologies[J]. Frontiers of Mechanical Engineering (Online First), 2017; 12 (1): 66 -76.
- [14] DUFFRENE L, GY R. Viscoelastic constants of a soda-lime-silica glass [J]. Journal of Non-crystalline Solids, 1997, 211: 30 -38.
- [15] 朱科军,尹韶辉,余剑武,等.非球面玻璃透镜模压成形有限元 分析[J].中国机械工程,2013,24(18):2509-2514.
 ZHU Kejun, YIN Shaohui, YU Jianwu, et al. Finite element analysis on aspherical glass lenses molding press[J]. China Mechanical Engineering, 2013, 24(18): 2509-2514. (In Chinese)