文章编号:1674-2974(2018)02-0026-09

DOI:10.16339/j.cnki.hdxbzkb.2018.02.04

汽车天窗开槽扰流器的降噪机理试验研究

杨振东^{1,2},谷正气^{1,3†},谢超¹,宗铁琦¹,汪怡平⁴,江财茂¹

(1. 湖南大学 汽车车身先进设计与制造国家重点实验室,湖南 长沙 410082;2. 湖南涉外经济学院 机械工程学院,

湖南长沙 410205;3.湖南文理学院 洞庭湖生态经济区建设与发展协同创新中心,

湖南 常德 415000;4. 武汉理工大学 汽车工程学院,湖北 武汉 430070)

摘 要:开槽扰流器能有效地降低汽车天窗开启的风振噪声.为了更好地理解其降噪机 理,构建了开槽扰流器和平直扰流器风洞试验平台,通过风洞试验来调查扰流器有无开槽对 其后方壁面压力场的影响.试验结果表明,相比于平直扰流器,扰流器的开槽能够将流动再 附着点提前,减少了气流的再循环区域,开槽扰流器下游流动存在初始的展向相位差,降低 了壁面压力展向上的相干性,导致壁面压力在展向上具有较大的衰退性.因此开槽扰流器, 对下游流动的扰动效果非常明显,能够弱化对乘员舱的激励.

关键词:风振噪声;开槽扰流器;降噪机理;风洞试验 中图分类号: U461.4

Experimental Research on Noise Reduction Mechanism of a Groove Spoiler in Vehicle Sunroof

文献标志码:A

YANG Zhendong^{1,2}, GU Zhengqi^{1,3†}, XIE Chao¹, ZHONG Yiqi¹, WANG Yiping⁴, JIANG Caimao¹

State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China;
 College of Mechanical Engineering, Hunan International Economics University, Changsha 410205, China;

3. Hunan Province Cooperative Innovation Center for the Construction & Development of Dongting Lake Ecological Economic Zone, Hunan University of Arts and Science, Changde 415000, China;

4. School of Automotive Engineering, Wuhan University of Technology, Wuhan 430070, China)

Abstract: A groove spoiler can effectively reduce vehicle sunroof buffeting noise. In order to have a better understanding of sunroof buffeting noise reduction mechanism associated with groove spoilers, a test platform of groove and uniform spoiler was built. Wind tunnel experiments were performed to investigate the surface pressure field downstream of uniform and grooved spoilers and to observe the effects of the grooves on the wall pressure. The test results show that the presence of grooves in the spoiler moves the reattachment point upstream and reduces the recirculation region length. Compared with the uniform spoiler, an initial spanwise phase difference was observed behind the spoiler in the presence of the groove, which decreased the coherence of the wall pressure, and the wall pressure had a big decay rate in the spanwise direction. Grooves in the spoiler can obviously disturb the downstream flow, and thus it can weaken

* 收稿日期:2017-04-23

作者简介:杨振东(1977-),男,河南信阳人,湖南大学工学博士,副教授

基金项目:国家自然科学基金资助项目(51375155,51775395), National Natural Science Foundation of China(51375155,51775395); 湖 南省教育厅优秀青年科学研究项目(16B148), 留学基金项目(留金发 2012 [2013]), 湖南大学汽车车身先进设计与制造国家重点实验 室自主课题资助项目(734215002)

[†]通讯联系人, E-mail:guzhengqi63@126.com

the primary aerodynamic excitation for the vehicle cabin.

Key words: wind buffeting noise; grooved spoiler; noise reduction mechanism; wind tunnel experiment

随着车辆实用速度的不断提高以及机械噪声 (如发动机噪声、传动噪声等)得到大量研究与较好 的有效控制,气动噪声问题已日益凸显,得到国内外 大量学者的关注,尤其是汽车风振噪声的研究.风振 噪声具有强度高而频率较低的特征,会使车内乘员 产生极为强烈的不适感,直接影响乘坐舒适性,而长 时间的风振噪声会对乘员的身心产生影响进而导致 行驶安全性的隐患.研究汽车风振噪声的特性,并对 其进行有效的控制,从而提高汽车乘坐的舒适性具 有很重要的意义.

早在 1965 年,美国福特公司的工程师 Bodger 和 Jones 率先开展了汽车侧窗开启时的风振噪声研 究^[1],发现大多数汽车在开启一个或一个以上侧窗 的情况下,当达到一定的车速后,就会产生让人耳不 舒适的脉动压力,他们称之为"风律动(Wind Throb)"^[2],后来有些学者把这种现象称为"共振 (resonance)",近年来,大多数学者用"风振(wind buffeting)"来描述这一类气动噪声^[3-5].天窗风振 噪声的特性及其控制方法在国内外已经得到了大量 的研究^[6-9].

汽车风振噪声在某种程度上可以归结为一种深 腔的流激振荡现象.综合分析国内外对汽车风振噪 声的控制,抑制天窗风振的强度方法可以归结为三 个控制方面:气动力的控制、风振频率的控制、Q因 子的控制[9],而其中控制风振频率是普遍采取的方 法,如在天窗前沿安装扰流器[10-12]、调整天窗玻璃 的开启位置[3,10]、安装条状方柱将天窗分为两部分 以及改变天窗后缘与水平面的夹角等[12-13].其中 应用最为广泛的是在天窗前沿安装扰流器来降低天 窗风振噪声,这是因为扰流器能够改变天窗前沿来 流边界层的厚度,形成相对较厚的湍流边界层,从而 引起乘员舱的声场强度比层流边界层情况下弱.而 且随着研究的深入,出现了各种样式的扰流器,如锯 齿形的扰流器^[14].Karbon 对两种扰流器(即平直扰 流器和开槽扰流器)做了仿真计算,计算结果表明开 槽扰流器能够比平直扰流器更能有效降低风振噪 声[3],然而并没有对其降低风振噪声的机理进行分 析.到目前为止,扰流器对风振噪声的降噪机理还不 是很清晰,尤其是开槽扰流器对风振噪声的降噪机 理还没有系统的研究.

本文采用文献[3]所提到的两种形状的扰流器, 如图1所示,构建试验平台进行风洞试验研究,分析 扰流器后方的壁面压力场,探讨开槽扰流器降低风振噪声的机理,为汽车天窗风振噪声的控制提供参考,对于提高我国汽车的乘坐舒适性和间接提高行车的安全性,具有较大的理论意义和实际应用价值.

图 1 两种扰流器示意图^[3] Fig. 1 Two kinds of spoiler

1 试验测试平台的构建

在湖南大学 HD-2BLWT 风洞进行了天窗扰流 器后方壁面压力试验^[9,15],天窗扰流器及测试平台 上压力孔分布如图 2 所示. 为了保证压力测试的准 确性,要求皮托管有足够的下垂距离,因此测试平台 高度为 500 mm. 为了减少平台水平截面面积对风 振噪声及测压管所测得的压力的影响,试验平台的 前方弧顶模拟迎风玻璃及部分车顶盖,如图 2(a)所 示.平台水平截面左右尺寸和天窗开口的宽度保持 一致,本文的研究重点在于扰流器后方的壁面压力 场,由于不同车的乘员舱体积不近相同,因此本文并 不考虑乘员舱的体积. 扰流器的安装角度为 50°,平 直扰流器和凹槽扰流器的横向跨度均为 700 mm. 开槽扰流器的开槽数为7个,凹槽和凸起均为矩形, 横向尺度均为 50 mm,高度为 20 mm,如图 2(b)所 示,而两端的凸起为 25 mm. 扰流器的突出高度 h 为40 mm, 扰流器和前部弧形车顶的间隔为27 mm. 扰流器下部采用两端支撑,支撑高度为 30 mm,这样保证来自于底部间隙的少量气流从扰流 器的下部穿过,而后部的横向凸台(模拟天窗前沿的 边框)对这部分少量的气流起到上抬的作用,从而破 坏扰流器上方分离的气流.为了便于下文分析,定义 扰流器中间前沿所对应的底板位置为坐标原点(0, 0).图 2(c)为平板表面局部静压测量孔径示意图, 在模型被测表面的法向开一小孔来感受该处的静 压.为了不影响试验数据,一般应尽量使孔径小,将 测压管埋入孔内,用砂纸打磨来保证平板表面的光 滑.在光滑平板上,第一横排测压孔距离扰流器的流 向距离(x方向)为 30 mm, 扰流器中间的第一竖排 测压孔的展向距离(y方向)定义为零,如图 2(b)所示.压力孔均匀分布,在流向上和横向上孔距均为20 mm,压力孔的数目为 10×20.测试布置及测试场景如图 3 所示,为了避免测试平台两端流动的影响,测压区域选取在扰流器中部靠右一侧的区域.

图 3 风洞试验场景 Fig. 3 Wind tunnel experiment

2 试验数据处理方法

天窗风振噪声在一定的速度范围存在,起始风 速为9m/s,高速公路最高车速不超过120km/s (33.3m/s),通常在30m/s是达到最大值.因此风 洞试验设置的风速范围为9~33m/s.试验数据采 集由美国PSI公司电子压力扫描阀系统(128通道) 完成.该系统由电子扫描压力传感器、接口板、A/D 转换板、压力控制单元以及数据采集控制单元和微 机等组成.测压试验时,参考点H选在模型前方 500 mm,离风洞地面高 400 mm 处,试验时温度 28 ℃,电子压力扫描阀参考压力 P。取 1 标准大气压. 试验中采样频率为 312 Hz,每个样本采集 6 000 个 采样点.同时,为了减少偶然误差从而增加模型表面 压力测量结果的精度和可信性,每个测点采集了 2 个样本,在数据处理时进行了数据平均.

测得的试验数据按如下方法处理:

以模型表面上的测点 i 为例,i 点处第j 个采样 点的瞬态静压 P_{ij} 通过式(1)求得,i 点处平均静压 $\overline{P_i}$ 通过式(2)求得,i 点处脉动静压 P'_i 可通过式(3) 求得.

$$P_{ij} = P_{ijc} + P_0 \tag{1}$$

$$\overline{P_i} = \frac{1}{N} \sum_{j=1}^{N} P_{ij}$$
⁽²⁾

$$P'_{i} = P_{i} - \overline{P_{i}} \tag{3}$$

式(1)中 P_{ijc} 表示电子压力扫描阀采集的*i*点 处第*j*个采样点的压力值(相对静压);式(2)中N表示测点*i*的采样总数(N=12000).在研究表面压 力特性时,通常将观测点压力转换为无量纲的压力 损失系数以便更好的分析,*i*点处第*j*采样点的风压 损失系数瞬态值 C_{Pij} 通过式(4)求得,*i*点处平均风 压损失系数 $\overline{C_{Pi}}$ 通过式(5)求得.

$$C_{Pij} = (P_{ij} - P_H) / 0.5 \rho V_H^2$$
(4)

$$\overline{C_{P_i}} = \frac{1}{N} \sum_{j=1}^{N} C_{p_i j}$$
(5)

式(4)中 P_H 表示测压试验参考点 H 处的静 压; V_H 表示点 H 处的控制风速; 0.5 ρV_H^2 表示参考 点 H 处的动压力.式(5)中 N 表示某一风速下的采 样次数.

为研究模型表面动载荷、风噪声、面板颤震等, 定义脉动风压系数 C_{Pirms} 来表征脉动压力,其公式为

$$\dot{C}_{\text{Pirms}} = \sqrt{\frac{1}{N-1} \sum_{j=1}^{N} (C_{P_{ij}} - \overline{C}_{P_i})^2}$$
 (6)

3 试验结果分析

3.1 静压分析

对于扰流器下游的流场可分为三个区域,即气流 分离区域(从车顶到扰流器的后端)、气流的再循环区 域和气流的再附着区域,如图 4 所示.选取扰流器的高 度 h,对于测压点的位置均采用无量纲化处理.

图 4 扰流器下游流场示意图 Fig. 4 Flow downstream of a spoiler

选取第1排第1列测试点(*x*/*h*=0.75,*y*/*h*=0)前1秒内的瞬态静压来进行对比分析,如图5和图6所示.

从图 5 可以看出,当来流风速为 9 m/s 时,开槽 扰流器相对于平直扰流器的瞬态静压幅值稍大一 些,但总体上两者相差不大.从图 6 中可以看出,当 来流风速为 30 m/s 时,开槽扰流器相对于平直扰流 器的瞬态静压幅值波动非常大.采用式(2)求取平均 值.就平均值而言,随着来流风速的增加,两者的差 值也越来越大,开槽扰流器的平均静压值波动要大 一些,如图 7 所示.

对于气流再循环区域,选取两个不同自由来流 风速下不同点的测试平均静压值进行分析,即9 m/ s 和 30 m/s,分别如图 8 和图 9 所示.从图 8(a)和图 9(a)中对比可以看出,平直扰流器对于展向上 y/h ≪3.5 的每一列,沿着流向上(x/h)均出现平均静压 值下降的趋势.从图 8(b)和图 9(b)中可以看出,对 于开槽扰流器的不同列(y/h=0~4.5)的采样点, 随着流向距离 x/h 的增加,均出现平均静压值上升 的趋势.最小平均静压值是最大幅值(负值)点,出现 在涡核区域.

如图 8 所示,在列 y/h=4.5上,平直扰流器平 均静压的最大幅值点出现在 x/h=3.25处,而开槽 扰流器平均静压的最大幅值点出现在 x/h=0.75处;在列 y/h=4上,平直扰流器的最大幅值点出现 在 x/h=3.25处,而开槽扰流器的最大幅值点出现 在 x/h=0.75,综上所述,相对于开槽扰流器,平直 扰流器平均静压的最大幅值点出现在后方,即涡核 后移,也就是说开槽扰流器将气流的再循环区域整 体前移.在图 9 中也展示了同样的流动特性.

-	-24.5 -28.0 -31.5 -21.6 -24.3 -27.0	Ē	0-y/h	=4.5 			_0_0	~0~0-	_0_0	
-		F				<u>го</u> Т		· · ·		
-		-	- °т ⁰		0-0	<u>+0-</u>	-010	-0-0'		<u> </u>
-	-27.3 -29.4 -31.5 -25.3	-	' 0-⊢0 -0 1⁄/	$\frac{1}{20}$	°.	-0	-0, .	-0-0-	<u></u>	
-		Е F	10 <u>10</u>	म् <u></u> र					<u> </u>	
-	27.6 29.9	Ξ_	y/h	=3.0		<u>``</u>	<u>201</u> 0	-0-0'		<u> </u>
 	-26.4 -29.7 -33.0 -24.0 -26.4 -28.8		-0_y//	$=0^{-1}$ n=2.5	0-c	-0~	`` <u>`</u>	_0_0-	-0_0	
●压 / 1		F	0-1-0			-	- <u>-</u> -	· · ·		
下均間 		E	·o— y//	h=2.0		`0~	-0-0	<u>~01</u>	-00	
и - -	-21.0 -25.2 -28.8		-0y/l	-0- n=1.5	°-c	- 0_ 	· · ·	-0-0-	-0-0	
-	-20.4 -23.8 -27.2 -17.1 -22.8 -28.5	E	· o.t.		0-0	1		· · ·	· · · ·	-
-		E	<u>.o—<i>y</i>///</u>	<u>-1.0</u>		10-	<u>-0</u> _0 	<u>+01</u>	<u>-010</u>	
-		-	v7	n=0.5	مـر	-0~	<u> 0+0</u>	-0+0-	-0-0	-
-	17.6 22.0	Ē			°-c	-0-	 	0-	· · · ·	
-	20.4	0	<u>ų — y</u> n. 1	2		3	<u>0</u> 4	<u>-01 -</u> 5	- <u></u> 6	ت 7
				(a)	<i>x,</i> 平首	/h 〔扰 況	抗器			
-	18.3	F	$-\frac{1}{\nu/h}$	=4.5						-
-	-24.4 -30.5 -11.8	-					_			
-	30.5 11 8	<u>E</u>	, 0 <u>, 0</u>	<u>-</u> -+	00	T				-
-	30.5 11.8 17.7 23.6		<u> </u>	<u>+</u> =4.0'		 				11
-	30.5 11.8 17.7 23.6 16.8 22.4		<u>, o , o</u> y/h y/h	<u>+</u> =4.0' <u></u> =3.5						un Lun
-	30.5 11.8 17.7 23.6 16.8 22.4 28.0		y/h 							سا ليسا ليسا ل
	30.5 11.8 17.7 23.6 16.8 22.4 28.0 11.8 17.7 23.6									يتنا ليتينا ليتينا ليتينا
- - - - - - - - - - - - - - - - - - -	30.5 11.8 17.7 23.6 16.8 22.4 28.0 11.8 17.7 23.6 13.8 20.7			=4.0 =3.5 =3.0 =3.0 =3.0						يتنا ليتينا ليتينا لتيتنا لتت
压/Pa ''''''''''''''''''''''''''''''''''''	30.5 11.8 17.7 23.6 16.8 22.4 28.0 11.8 17.7 23.6 13.8 20.7 27.6 -7.4									يتنا ليتينا ليتينا ليتينا لت
均静压/Pa	30.5 11.8 17.7 23.6 16.8 22.4 28.0 11.8 17.7 23.6 13.8 20.7 27.6 -7.4 14.8 20.7									يتنا ليتينا ليتينا ليتينا ليتينا
平均静压/Pa	30.5 11.8 17.7 23.6 16.8 22.4 28.0 11.8 22.4 28.0 11.8 20.7 27.6 -7.4 14.8 22.2 13.2 21.9 8 22.4 21.9 22.4 14.8 22.2 13.2 21.9 8 22.4 21.9 21.9 21.9 21.9 21.9 21.9 21.9 21.9									يتنا ليتينا ليتينا لتتينا لتتينا لتتث
平均静压/Pa	30.5 11.8 17.7 23.6 16.8 22.4 28.0 11.8 22.4 17.7 23.6 13.8 20.7 27.6 -7.4 14.8 22.2 13.8 20.7 -7.4 14.8 22.2 13.8 26.4 3.30 -7.1 14.2									يتنا ليتينا ليتينا لتيتنا ليتينا ليت
平均静压/Pa	30.5 11.8 17.7 123.6 16.8 122.4 122.8 11.8 122.4 122.8 11.8 122.4 122.8 11.7 123.7 13.8 120.7 6 -7.4 122.2 13.8 120.7 6 120.7 14.2 13.8 120.7 6 120.7 14.2 13.8 120.7 6 120.7 14.2 13.8 14.2 14.2 14.2 14.2 14.2 14.2 14.2 14.2									يتنا لتتنتا لتتنتا لتتنتا لتتنتا لتتنتا لتنتثا ل
平均静压/Pa	30.5 8. 11.8 23.6 8. 122.6 8. 123.6 8. 124.4 22. 13.6 8. 120.7 6. 120.7 6. 120.7 6. 120.7 6. 120.7 6. 120.7 6. 120.7 6. 120.7 6. 120.8 2. 120.8 2. 120									يتنا ليتينا ليتينا ليتينا ليتينا ليتينا ليتينا
平均静压/Pa	30.5 8.17.7 1123 6.8.4.4 117.7 6. 8.4.4 117.7 6. 8.4.4 117.7 6. 8.4.4 117.7 6. 8.4.4 117.7 6. 8.4.4 117.7 6. 8.4.4 1122 1.2.4 1122 1.2.4 1123 1.2.4 1124 1									بينا ليتينا ليتينا ليتينا ليتينا ليتينا ليتينا ليت
平均静压/Pa	30.5 8 11.8 7 22 16.8 8 122.4 11.8 122.4 122.2 13.8 8 122.4 11.7 7 120.7 6 120.7 6 120.7 6 120.7 6 120.7 6 120.2 120.4 12 120.4 120.									يتنا ليتنتأ ليتينا ليتنتأ ليتنتأ ليتنتأ ليتنتأ لم
平均静压/Pa	30.5 8 11.7.7 6 8 22 11.2 12 12 12 12 12 12 12 12 12 12 12 12 12									يتنا ليتينا ليتينا ليتينا ليتينا ليتينا ليتينا ليتينا و
区 平市 · · · · · · · · · · · · · · · · · ·	30.5.8 11.7.7.6.8.4 22.1.12.3.6.8.4 11.7.7.7.4 11.8.8.4 11.7.7.4 11.8.8.4 11.7.4.8.4 11.7.4.8.4 11.7.4.8.4 11.7.4.8.4 11.7.4.8.4 11.7.4.8.4 11.7.4.8.4 11.7.4.8.4 11.7.4.8.4 11.7.4.8.4 11.7.4.8.4 11.7.4.8.4 11.7.4.4.4 11.7.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4									

3.2 风压损失系数

第1列(y/h=0)测试点位于开槽区域的正中 部位,选取该列测试点来进行有无开槽两种情况下 的风压损失系数对比分析,考虑三种不同的来流风 速进行分析,采用公式(4)和公式(5)计算风压损失 系数,风压损失系数随着流向距离的变化(采用流向

上的无量纲坐标 x/h, h=40) 如图 10 所示. 对于开 槽扰流器而言,压力损失系数随着流向距离的增加 而增加,逐渐接近常数值,该区域呈现负压并且压力 逐渐增加,表明该区域是再循环流动的区域;在下游 某一位置,压力损失系数开始变为一个常数,根据 Farabee 和 Casarella 的研究结论^[16],表明此处是流 动分离的再附着点.

-0.7

从图 10 中可以看出,随着流速升高,扰流器后 方气流分离的再附着点向下游延迟.两种扰流器的 风压损失系数均呈现先减少后增加的趋势,最后趋 于常数值.从图 10(a)中可以看出,当来流风速 u_∞ =9 m/s 时,在 x/h<3 的区域可以认为是气流再循 环区域的上游,由于有开槽的作用,正如图 7 所示, 开槽扰流器相对于平直扰流器在此区域气流波动更 加剧烈,所以风压损失相对较大;在 x/h>3 的区 域,开槽扰流器能够降低再循环区域下游的压力损 失系数,也正如图 8 和图 9 所示,平直扰流器的气流 再循环区域的涡核整体向下游移动,平直扰流器波 动更加剧烈,风压损失系数较大.因此 x/h=3 可以 认为是该风速下的风压损失系数变化的临界点.图 10(b)和图 10(c)也呈现同样的变化规律;并且同时 可以看出,临界点数值随着来流风速的增大而变大, 即临界点向下游移动.

从图 10 中可以看出,当自由来流风速等于 9 m/s时,开槽扰流器下游的再附着点为 x/h=6.25, 平直扰流器下游的再附着点为 x/h=7.75;当自由 来流风速等于 21 m/s时,开槽扰流器下游的再附着 点为 x/h=6.75,平直扰流器下游的再附着点为 x/ h=8.25;当自由来流风速为 30 m/s时,开槽扰流器 下游的再附着点为 x/h=6.75,平直扰流器下游的 再附着点为 x/h=8.75.由此可以看出,开槽扰流器 的分离气流的再附着点要比平直扰流器更为提前, 即减少了气流的再循环区域.其他风速条件下也呈 现同样的流动特征.根据文献[9]的研究表明,轿车 天窗风振发生亥姆霍兹共振的无量纲频率约为 0.3 左右,对应的车速约 30 m/s 左右,因此下文的分析 均选取自由来流风速 30 m/s.

3.3 脉动风压的相位差

当风速等于 30 m/s 时,在 f = 24.5 Hz 处,风 振噪声达到最大.选取流向上距离扰流器的几个不 同处,来分析同一展向上扰流器有无开槽对壁面脉 动风压初相位的影响,如图 11 所示.

从图 11 中的左列图可以看出,平直扰流器下游 同一展向上的相位差变化较小.从右列可以看出,在 开槽(groove)区域处出现正的相位,在同一展向上 出现较大的相位差变化,距离扰流器越近,展向上的 相位差越大,开槽扰流器下游区域展向相位上的不 一致性,将会导致壁面压力场产生破坏性的交界面, 因此在图 4 所示的再循环区域下游产生较低的脉动 风压.

3.4 壁面压力展向上的相干性和衰退性比较

首先由 Corcos 提出了经典的壁面湍流脉动压 力模型^[17],并得到了广泛的应用.其他类型的湍流 边界层的波谱频率模型^[18-20]考虑了边界层的厚度 和空间分离等情况. Corcos 模型能够有效地描述低 马赫数下的壁面压力谱,因此本研究根据 Corcos 的 湍流边界层压力模型的经验公式来计算衰退系数. 根据 Corcos 模型^[17],平板上两个测量点之间的壁 面压力的互谱密度计算公式为

$$S_{p_1p_2}(\boldsymbol{\xi}_x, \boldsymbol{\xi}_y, \boldsymbol{\omega}) = \Phi_{p_1p_1}(\boldsymbol{\omega}) e^{-a_x \mid \boldsymbol{\omega} \boldsymbol{\xi}_x/u_c \mid} \times e^{-a_y \mid \boldsymbol{\omega} \boldsymbol{\xi}_y/u_c \mid} \times e^{-i\boldsymbol{\omega} \boldsymbol{\xi}_x/u_c}$$
(7)

式(7)中 u_c 是壁面湍流的迁移速度, Chase 建议

壁面湍流迁移的速度取 $u_{\epsilon} = 0.75 u_{\infty}$ ^[18]; $\Phi_{p_1p_2}$ 是 测量点(x_1, y_1)的壁面压力自功率谱密度函数,自 功率谱密度函数描述了在频域中信号能量或功率分 布,可由自相关函数的 Fourier 变换求得; ξ_x 和 ξ_y 分 别是两测量点之间在流向上和展向上之间的距离; a_x 和 a_y 分别是流向上和展向上的衰退系数,其可以 通过最小二乘法进行估算.

Corcos 模型中的参数容易从测得的物理量来 计算^[17],由式(7)可以进一步推导两个测量点之间 的相干性系数为

$$\gamma^{2} = \frac{\Phi_{\rho_{1}\rho_{1}}^{2}(\boldsymbol{\omega})}{\Phi_{\rho_{1}\rho_{2}}(\boldsymbol{\omega})\Phi_{\rho_{2}\rho_{2}}(\boldsymbol{\omega})} \times e^{-2a_{x} \mid \boldsymbol{\omega}\xi_{x}/u_{c} \mid} \times e^{-2a_{y} \mid \boldsymbol{\omega}\xi_{y}/u_{c} \mid}$$

$$(8)$$

当自由来流风速 30 m/s 时,同一展向上点(*x*/ *h*=2,*y*/*h*=0)和点(*x*/*h*=2,*y*/*h*=2)之间的壁面压 力相干性如图 12 所示.

图 12 同一展向上两点壁面压力相干性系数比较 Fig. 12 Coherence of dynamic pressure at two points along spanwise direction

从图 12 中可以看出,在频率 f<100 Hz 范围 内,相对于平直扰流器,开槽扰流器下游的气流展向 上相干性大大降低;当频率超过 100 Hz 时,两种扰 流器两测量点之间的相干性系数均很小.因此开槽 扰流器能够减少其下游气流展向上的壁面压力相 干性.

根据表面压力的自功率谱和相干性系数,计算 流向上的衰退系数和展向上的衰退系数.当y/h=0时,开槽扰流器流向上壁面压力的衰退系数 $a_x =$ 0.71,而平直扰流器流向上壁面压力的衰退系数为 $a_x = 0.63$,这也就揭示了开槽扰流器下游的流场再 附着点要提前一些的原因.平直扰流器展向上的衰退 退系数 0.6 < a_y < 1.3,开槽扰流器展向上的衰退 系数 0.9 < *a*_y < 1.5, 如表 1 所示. 从表 1 中可以看 出, 在同一展向上, 开槽扰流器的衰退系数大于平直 扰流器的衰退系数, 这就意味着开槽扰流器展向上 具有临近流动结构的快速去相关性的特性. 对于两 种不同类型的扰流器, 平直扰流器展向上的衰退系 数在 *x*/*h*=8.75 处达到最大值 1.27, 开槽扰流器展 向上的衰退系数在 *x*/*h*=6.25 处达到最大值 1.45, 结合图 10(c)可以看出两种扰流器下游展向上的衰 退系数均在再附着区域达到最大, 从而引起气流展 向上的快速去相关性.

表 1 展向上的衰退系数 Tab. 1 The spanwise decay coefficient								
x/h	平直扰流器	开槽扰流器						
0.75	0.63	0.71						
1.25	0.65	0.79						
1.75	0.72	0.84						
2.25	0.74	0.91						
2.75	0.84	1.06						
3.25	0.91	1.27						
3.75	0.93	1.31						
4.25	0.95	1.35						
4.75	1.01	1.41						
5.25	1.16	1.42						
5.75	1.20	1.44						
6.25	1.23	1.45						
6.75	1.22	1.42						
7.25	1.23	1.36						
7.75	1.25	1.31						
8.25	1.26	1.30						
8.75	1.27	1.28						

3.5 测量点的自功率谱密度比较

壁面压力波动归因于边界层里各种尺度的速度 波动,在当前的研究中,因为风振噪声主要发生在低 频区域,依据自由来流的动压力 $q = 0.5 \rho u_{\infty}^2$ 以及扰 流器的突出高度 h,在计算自功率谱时采用频谱标 定律(Frequency-spectral scaling)来标定频谱^[16,21], 将 会 产 生 随 $\omega h/u_{\infty}$ 而 变 化 的 频 谱 数 据 $S_{pp}(\omega)u_{\infty}/(q^2h)$.在自由来流风速等于 30 m/s 时, 扰流器下游某点(x/h=8, y/h=2)的壁面压力自功 率谱如图 13 所示. 从图 13 中可以看出,在频率 $\omega h/u_{\infty} \leq 2$ 时,谱线相差 4 dB 以上;在 $\omega h/u_{\infty} \geq 4$, 两者相差不大.这就表明扰流器有无开槽对壁面压 力自功率谱的低频区域影响较大,开槽扰流器比平 直扰流器在低频区域相对安静些,而高频区域影响 较小.其他来流风速条件下得出的结论也是同样的.

图 13 测量点(x/h=8,y/h=2)壁面压力自功率谱比较 Fig. 13 Auto power spectral density of wall pressure fluctuation of the monitor point(x/h=8,y/h=2)

4 结 论

本文通过风洞试验对扰流器下游的壁面压力场 进行分析,探讨开槽扰流器降低风振噪声的机理,得 出如下结论:

1)从静压场的测量上来看,相对于平直扰流器, 开槽扰流器能够降低流向下游的压力损失系数,开 槽扰流器的分离气流的再附着点要比平直扰流器更 为提前,减少了气流的再循环区域.

2)开槽扰流器展向上的相位差较大,开槽扰流 器下游展向相位上的不一致性,产生破坏性的交界 面,将会在压力面的上游区域整体上产生较低的驱 动力.

3)开槽扰流器下游的壁面压力在展向上相干性 大大降低,衰退系数较大,具有临近流动结构的快速 去相关性的特性.

4)扰流器有无开槽对壁面压力自功率谱低频区 域影响较大,开槽扰流器比平直扰流器安静些.

参考文献

- BODGER W, JONES C. Aerodynamic wind throb in passenger cars [C]// SAE World Congress & Exhibition. Warrendale, PA: SAE, 1964:195-208.
- [2] OTA D K, CHAKRAVARTHY S R, BECKER T, et al.
 Computational study of resonance suppression of open sunroofs
 [J]. Journal of Fluids Engineering, 1994, 116(4): 877-882.
- [3] KARBON K, SINGH R. Simulation and design of automobile sunroof buffeting noise control [C]//Proceedings of the 8th

- [4] 谷正气,肖朕毅,莫志姣. 汽车风振噪声的 CFD 仿真研究现状[J]. 噪声与振动控制,2007,27(4):65-68.
 GU Z Q, XIAO Z Y, MO Z J. Review of CFD simulation on vehicle wind buffeting[J]. Noise and Vibration Control, 2007, 27(4):65-68. (In Chinese)
- [5] YANG Z D, GU Z Q, TU J Y, et al. Numerical analysis and passive control of a car side window buffeting noise based on scale-adaptive simulation[J]. Applied Acoustics, 2014, 79(5) : 23-34.
- [6] WANG Y P, DENG Y D, YANG Z D, et al. Numerical study of the flow-induced sunroof buffeting noise of a simplified cavity model based on the slightly compressible model [J]. Proceedings of the Institution of Mechanical Engineers Part D: Journal of Automobile Engineering, 2013, 227 (8): 1187 – 1199.
- [7] 杨振东,谷正气.基于尺度自适应模拟的汽车天窗风振噪声特性分析[J].机械工程学报,2016,52(12):107-117.
 YANG Z D, GU Z Q. Analysis of car sunroof buffeting noise based on scale-adaptive simulation [J]. Journal of Mechanical Engineering, 2016, 52(12):107-117. (In Chinese)
- [8] 杨振东,谷正气,董光平,等. 汽车天窗风振噪声分析与优化 控制[J]. 振动与冲击, 2014, 33(21):193-201.
 YANG Z D, GU Z Q, DONG G P, et al. Analysis and optimal control for car sunroof buffeting noise[J]. Journal of Vibration and Shock, 2014, 33(21):193-201. (In Chinese)
- [9] 杨振东. 汽车风振噪声特性分析与被动控制研究[D]. 长沙:湖 南大学机械与运载工程学院, 2016:5-21. YANG Z D. Comprehensive study of characteristics and passive control methods of vehicle buffeting noise [D]. Changsha: College of Mechanical and Vehicle Engineering, Hunan University, 2016:5-21. (In Chinese)
- [10] AN C F, SINGH K. Optimization study for sunroof buffeting reduction[C]// SAE 2006 World Congress & Exhibition. Warrendale, PA: SAE, 2006:1-12.
- [11] CROUSE B, BALASUBRAMANIAN G, SENTHOORAN S, et al. Investigation of gap deflector efficiency for reduction of sunroof buffeting[C]// SAE 2009 Noise and Vibration Confer-

ence and Exhibition. Warrendale, PA: SAE, 2009:1-12.

- [12] AN C F, SINGH K. Sunroof buffeting suppression using a dividing bar [J]. SAE International Journal of Passenger Cars-Mechanical Systems, 2007, 116:1-9.
- [13] RAO J S, KUMAR M S, SINGH A. Numerical analysis of sunroof buffeting[C]// Fifth International SAE India Mobility Conference on Emerging Automotive Technologies Global and Indian Perspective. Warrendale, PA: SAE, 2008:409-417.
- [14] 刘龙贵.基于弱可压缩模型的汽车风振噪声分析与优化[D]. 株洲:湖南工业大学机械工程学院,2014:51-65.
 LIULG. Mechanism and optimization about vehicle wind buffeting noise based on the weakly compressible model [D].
 Zhuzhou: School of Mechanical Engineering, Hunan University of Technology, 2014:51-65. (In Chinese)
- [15] 黄泰明,谷正气,文琪,等. 车身俯仰运动时流场的迟滞现象研究[J]. 湖南大学学报(自然科学版),2016,43(4):52-58.
 HUANG T M, GU Z Q, WEN Q, et al. Study on the hysteresis effects of flow-field around road vehicle subjected to pitching motion [J]. Journal of Hunan University (Natural Sciences), 2016,43(4): 52-58. (In Chinese)
- [16] FARABEE T M, CASARELLA M J. Spectral features of wall pressure fluctuations beneath turbulent boundary layers [J]. Physics of Fluids A Fluid Dynamics, 1991, 3(10):2410-2420.
- [17] CORCOS G M. Resolution of pressure in turbulence[J]. Journal of the Acoustical Society of America, 1963, 35(35):192-199.
- [18] CHASE D M. A model wave vector-frequency spectrum of turbulent-boundary-layer wall pressure[J]. Journal of the Acoustical Society of America, 1979,70(1):29-67.
- [19] CHASE D M. The character of the turbulent wall pressure spectrum at subconvective wave numbers and a suggested comprehensive model[J]. Journal of Sound & Vibration, 1987, 112(1):125-147.
- [20] GOODY M. Empirical spectral model of surface pressure fluctuations [J]. Aiaa Journal, 2012, 42(9):1788-1794.
- [21] KEITH W L, HURDIS D A, ABRAHAM B M. A comparison of turbulent boundary layer wall-pressure spectral [J]. Journal of Fluids Engineering, 1992, 114(3):338-347.