文章编号:1674-2974(2017)01-0001-08

考虑气动阻尼的浮式风机频域响应分析

邓露^{1†},黄民希¹,肖志颖¹,宋晓萍²,吴海涛²

(1. 湖南大学 土木工程学院,湖南 长沙 410082; 2. 湘电风能有限公司,湖南 湘潭 411102)

摘 要:分析了气动阻尼对浮式风机频域响应的影响.选取美国可再生能源实验室 (NREL)提出的5兆瓦(MW)浮式风机模型作为算例,利用气动阻尼计算方法建立气动阻 尼矩阵,再基于三维势流理论计算浮式平台的水动力系数,并将系泊系统视为线性弹簧以考 虑其刚度,最后在频域内分别建立并求解考虑与不考虑气动阻尼两种情况下的浮式风机刚 体运动方程.利用求解频域方程得到的幅频响应算子(response amplitude operators, RAOs)及结合 JONSWAP 海浪谱得到的响应谱,在频域内分析了气动阻尼对浮式风机刚体 运动的影响.结果表明:作业工况下气动阻尼能有效地降低纵荡和纵摇运动 RAOs 的峰值, 且能在一定范围内减小对应自由度上响应谱的幅值和零阶矩.

Analysis on Frequency Response of Floating Wind Turbine Considering the Influence of Aerodynamic Damping

DENG Lu^{1†}, HUANG Mingxi¹, XIAO Zhiying¹, SONG Xiaoping², WU Haitao²

(1. College of Civil Engineering, Hunan University, Changsha 410082, China;

2. XEMC Windpower Co., Ltd, Xiangtan 411102, China)

Abstract: This study analyzed the influence of aerodynamic damping on frequency domain response of floating wind turbine. The 5 megawatt (MW) floating wind turbine model built by the National Renewable Energy Laboratory (NREL) of America was selected as an example. The aerodynamic damping matrix of the motion for the rigid body was established according to aerodynamic damping calculation method. Hydrodynamic coefficients were computed based on the three-dimensional potential flow theory, and the stiffness of mooring system was also taken into account as linear spring. Motion equations of the wind turbine with or without consideration of aerodynamic damping on the motion of the floating wind turbine was examined in frequency domain through the response amplitude operators (RAOs) by solving the equations, and the response spectrum was derived from RAOs and JONSWAP wave spectrum. The results show that aerodynamic damping can effectively reduce the peak values of the surge and pitch RAOs under operating condition, and decrease the amplitude and zero-order moment of the corresponding response spectrum to a

* 收稿日期:2015-12-24

基金项目:国家高技术研究发展计划(863 计划)资助项目(2013AA050603), National High-tech R&D Program of China (863 Program)(2013AA050603); 湖湘青年创新创业平台

作者简介:邓露(1984-),男,湖南娄底人,湖南大学教授,博士

[†]通讯联系人, E-mail:denglu@hnu.edu.cn

certain degree.

Key words:offshore wind turbines; frequency domain analysis; aerodynamic damping; response amplitude operators; response spectrum

海上风能有着风速大、湍流强度低、储量丰富等特点,采用浮式风机是开发深水风能的首选技术手段.利用频域分析得到的 RAOs 及响应谱来评估浮 式平台的动态性能,是其设计和优化中的重要内容: Bulder^[1]等针对适用于 5MW 风机的三浮体式浮式 平台,通过求解频域内浮式风机运动方程,得到了平 台各运动自由度的 RAOs 及特定海况下的响应谱, 并由此分析了该浮式风机在对应海洋环境下的适用 性;唐友刚^[2]等综合驳船式和单柱式(Spar 式)平台 的特点,提出了一种新型浮式平台方案,在频域内利 用 RAOs 分析了波浪入射角和水深等因素对该平 台运动的影响. 而气动阻尼是多数学者在频域分析 中忽略的因素.

Kühn^[3]和 Salzmann^[4]指出,气动阻尼是海上 风机支撑结构的振动与疲劳分析中的关键影响因 素.邓露[5]等指出风机振动过大会对运行造成严重 影响. Karimirad^[6]等通过谱分析指出气动阻尼能有 效抑制风机机舱在纵荡方向上的低频响应,且根据 叶素动量理论指出浮式平台的刚体运动会受到气动 阻尼的影响.但目前关于气动阻尼对浮式平台运动 频域响应影响的研究较少:Roddier^[7]等基于 Wind-Float 浮式风机,通过模型实验得到浮式风机的 RAOs,结果表明在研究中考虑与不考虑风荷载得 到的 RAOs 相差不大,但该研究所涵盖的波浪周期 和风速范围有限,且实验模型采用圆板代替风轮,不 能准确地反映风机的气动特性; Wayman^[8]等和 Ramachandran^[9]等联合利用分析软件 WAMIT 和 FAST 计算了多种浮式风机的 RAOs 并结合 ISSC 海浪谱计算了不同海况下各运动自由度的标准差, 发现浮式风机不同于船舶和海洋平台,其 RAOs 的 取值与海况有关,但该研究涵盖的工况较少,也没有 深入探究影响气动阻尼的主要因素.

针对上述问题,本文在频域内分别建立并求解 考虑与不考虑气动阻尼两种情况下的浮式风机运动 方程.对比两种情况下 RAOs 和响应谱,在频域内 按照不同的工况定量分析了气动阻尼对浮式风机响 应的影响,并明确了影响气动阻尼的关键因素.

1 气动阻尼

1.1 气动阻尼的产生机理

气动阻尼源于风轮与空气的相互作用,如图 1^[3]:叶素截面处于转速为 Ω 的风轮的径向r处,塔 顶顺风向运动时,叶素处实际的轴向风速等于入流 轴向风速 $V(1-\alpha)$ 减去塔顶速度 x_{top} ,导致叶片攻角 α 变小,在附着流的前提下并考虑升力系数 C_L ,这 将使得叶素受到的升、阻力变小,对应受到的推力 d F_x 减小 ΔdF_x ,整体上表现为风轮推力变小,故阻 碍塔顶顺风向运动;同理,当塔顶逆风向运动时,风 轮推力增大,进而阻碍塔顶的逆风向运动,则推力的 变化始终阻碍着塔顶运动,这便是气动阻尼的机理.

1.2 气动阻尼的计算

利用 NREL 风机时域分析软件 FAST 建立风 机模型,能考虑失速及小叶尖速比的情况,并能模拟 具有复杂翼型的叶片^[3-4].在 FAST 弹性动力模块 中将结构阻尼设为零,并通过在软件中关闭浮式平 台刚体运动自由度来限制平台运动以排除附加阻尼 的影响,得到仅在气动阻尼作用下塔顶位移衰减 曲线.

在 FAST 的气动模块中采用叶素动量理论计 算气动荷载并考虑叶尖和叶根损失和采用 Beddoes^[10]等提出的动态失速模型.在 FAST 的控制模 块中采用固定的风轮转速和浆距角,其具体值应根 据不同的稳态风速确定^[11],并用指数模型来考虑竖 直方向风剪切^[12].通过时域模拟,得到了仅在气动 阻尼作用下的塔顶振动衰减曲线,如图 2 所示(图中 塔顶位移从对应风速下塔顶振动的平衡位置算起). 进而利用衰减曲线并结合式(1)和(2)计算对数衰减 率和阻尼比^[3]:

$$\delta = \ln \left(\frac{A_n}{A_{n+1}} \right) \tag{1}$$

$$\boldsymbol{\xi}_{\text{aero}} = \frac{\delta}{\sqrt{4\pi^2 + \delta^2}} \tag{2}$$

式中:∂为塔顶位移的对数衰减率; ξ_{aero}为气动阻尼 比; A_n, A_{n+1}为相隔一个周期的两个位移峰值.

图 2 塔顶振动衰减示意图 Fig. 2 Illustration of tower top vibration decay

将风轮和机舱简化为塔架顶部的刚性质点,把 塔架-机舱-转子体系视为有端部集中质量的悬臂 梁,并建立对应的有限元模型,采用梁单元对塔架进 行离散化建模^[13],通过有限元分析得到一阶模态质 量和一阶自振频率并采用式(3)计算阻尼系数^[3]:

$$c_{\rm aero} = 2M_1 \omega_1 \xi_{\rm aero} \tag{3}$$

式中:*c*_{aero}为气动阻尼系数;*M*₁,ω₁分别为该有限元 模型的一阶模态质量和一阶自振频率.

1.3 气动阻尼矩阵

在风向与风轮平面垂直的前提下,气动阻尼主 要阻碍塔顶在风轮平面法向的振动,对其他自由度 的影响不明显^[3,13].则浮式风机对应自由度上受到 的气动阻尼力、力矩如式(4)和(5)所示:

$$F_{\text{aero}} = -c_{\text{aero}}\dot{x}_{\text{top}}$$

$$M_{\text{erro}} = -c_{\text{corr}}\dot{x}_{\text{top}}L$$
(5)

式中: F_{aero}, M_{aero}分别为气动阻尼力、力矩; L为F_{aero} 作用点到运动参考点的垂直距离, 在风机俯仰角度 不大的情况下, 近似地认为 L 在运动过程中保持不 变.

将整个浮式风机视作一个刚体.由于气动阻尼 主要取决于叶片翼型的固有气动特性和风轮转 速^[14-15],故这种情况下风机气动阻尼系数 *c*aero 保持 不变.当浮式平台发生运动并引起塔顶运动时,结合 塔顶运动和浮式平台的运动关系,气动阻尼将阻碍 平台的纵荡(surge)和纵摇(pitch)运动^[6].利用式 (6)所示的塔顶运动与浮式平台刚体运动的关系,将 气动阻尼力、力矩写为式(7)和(8):

$$\dot{x}_{\rm top} = \dot{x}_1 + \dot{x}_5 L \tag{6}$$

$$F_{\text{aero}} = -c_{\text{aero}}(\dot{x}_1 + \dot{x}_5 L) \tag{7}$$

$$M_{\text{aero}} = -c_{\text{aero}}(\dot{x}_1 + \dot{x}_5 L)L \tag{8}$$

式中 *x*₁,*x*₅分别为浮式平台纵荡运动的速度、纵摇运动的角速度.

将气动阻尼力、力矩写成气动阻尼力矩阵 **F**_{damp} 的形式,如式(9)所示:

将该矩阵移至浮式风机运动方程的左边,得到 式(10)所示的气动阻尼矩阵 *C*_{aero}:

2 水动力系数和系泊刚度

浮式平台为大尺度构件,宜采用三维线性势流

理论计算水动力系数.根据拉普拉斯方程、海底边界 条件、线性化自由液面的动力和运动边界条件可得 线性入射势 Φ₁,在上述方程和边界条件的基础上补 充物面边界条件,求解可得绕射势 Φ_D和辐射势 Φ_R.

再利用线性化的伯努利方程计算物体湿表面的 压力分布,最终得到波浪作用下浮体上的波浪力、力 矩.利用分析软件 HydroD 建立浮式风机质量模型 和水动力模型,得到质量矩阵和包括附加质量、附加 阻尼、波激力、静水回复力在内的水动力系数矩阵. 系泊系统提供的回复力与平台位移不成正比,即其 回复刚度是非线性的,但可把系泊系统线性化并将 其视为线性弹簧在运动方程中考虑其刚度^[16].

3 频域内运动方程

得到气动阻尼、质量、水动力系数和系泊刚度矩 阵后,在频域内建立式(11)所示运动方程:

 $\left[-\omega^2\left(\boldsymbol{M}+\boldsymbol{M}_{a}(\omega)\right)+\mathrm{i}\omega\left(\boldsymbol{C}_{aero}+\boldsymbol{C}_{a}(\omega)\right)+\right]$

 $(K_{hs} + K_m)$] $X(\omega, \beta) = F_{ex}(\omega, \beta)$ (11) 式中: ω, β 为入射波的频率和入射角;M为质量矩 阵; $M_a(\omega)$ 为附加质量矩阵; C_{aero} 为气动阻尼矩阵, 当不考虑气动阻尼时令 C_{aero} 为零; $C_a(\omega)$ 为附加阻 尼矩阵; K_{hs} 为静水回复刚度矩阵; K_m 为系泊刚度矩 阵; $X(\omega, \beta)$ 为浮式风机位移幅值矩阵; $F_{ex}(\omega, \beta)$ 为单 位波幅规则波对应的波激力矩阵.

求解上述方程可得式(12)所示的浮式平台位移 幅值关于波幅的传递函数 $H(\omega,\beta)$,即 RAOs(ω,β), 其意义为特定频率单位波幅规则波作用下浮式风机 的位移幅值,用于评价浮式风机的动态性能,如式 (13)所示:

$$H(\omega,\beta) = \text{RAOs}(\omega,\beta) = \frac{F_{\text{ex}}(\omega,\beta)}{\left[-\omega^{2}\left(M + M_{a}(\omega)\right) + i\omega\left(C_{\text{aero}} + C_{a}(\omega)\right) + \left(K_{\text{hs}} + K_{\text{m}}\right)\right]}$$
(12)

 $X(\omega,\beta) = AH(\omega,\beta) \tag{13}$

式中:A 为波幅;H(ω,β)为浮式平台位移幅值关于 波浪幅值的传递函数.

利用传递函数并结合波浪谱,可得到对应海况 下的响应谱,如式(14)所示:

$$S_{\rm r}(\omega,\beta) = |H(\omega,\beta)|^2 S_{\rm w}(\omega,\beta)$$
(14)

式中: $S_r(\omega,\beta)$ 为浮式平台刚体位移响应谱; $S_w(\omega,\beta)$ 为波浪谱.

4 算 例

4.1 计算模型

选取 NREL 提出的 5 MW 风机和 IEA(国际能源署)提出的 OC3 Hywind-Spar 浮式平台及对应的 系泊系统作为算例.表 1 和表 2 分别列出了风机和 浮式平台及系泊系统的主要参数^[12,17].

对于 OC3 Hywind-Spar 平台,通过势流理论计 算得到的附加阻尼不能反映平台受到的全部阻尼, 还需在运动方程中添加与波浪频率无关的附加线性 阻尼矩阵 $C_{e}^{[17]}$.

Jonkman 等利用 FAST 线性化功能,得到了该 系泊系统的刚度矩阵 K_m ,因 FAST 不能模拟该系 泊中的三角连接,故另需在 K_m 中添加附加艏摇刚度 来考虑三角连接的贡献^[17].

表1 风机主要参数

Tab. 1 Main parameters of	the wind turbine
参数	数值
轮毂高度/m	90
风轮直径/m	126
额定功率/MW	5
控制方式	变速、变桨
塔顶,塔架质量/kg	350 000,347 460
切入,额定,切出风速/($m \cdot s^{-1}$)	3,11.4,25
切入,额定转速/(r·min ⁻¹)	6.9,12.1

表 2 平台及系泊主要参数 Tab. 2 Main parameters of the platform and mooring

参数	数值
平台吃水深度/m	120
工作水深/m	320
平台质量/kg	7 466 330
质心位置(水面以下)/m	89.92
系缆数/根	3
系缆间夹角/(°)	120
导缆孔位置(水面以下)/m	70
系缆干密度/(kg・m ⁻¹)	77.71

4.2 计算工况

代表性地选取作业和自存两种典型工况,并在 各典型工况下细分了数组海况,如表 3 所示.选用 JONSWAP海浪谱,取谱峰升高因子 $\gamma = 3.3.$ 考虑 平台的对称性和为便于计算,取一个浪向角 $\beta = 0^{\circ}$.

4.3 计算结果

根据前述章节,在时域模拟中排除了结构阻尼

和附加阻尼的影响,得到了仅在气动阻尼作用下的 塔顶位移衰减曲线,如图 3 所示(图中塔顶位移均从 对应风速下塔顶振动的平衡位置算起).代表性地给 出了风速为 7 m/s 和 30 m/s 时的塔顶位移衰减曲 线,作业工况其他风速下的衰减曲线与图 3(a)相 似,自存工况其他风速下的衰减曲线与图 3(b)相 似.基于该衰减曲线,并利用式(3)计算阻尼比,表 4 给出了不同风速下的气动阻尼比.

表 3 计算工况 Tab. 3 Calculation cases

风机工况	海况编号	$V_{ m hub}$ /(m • s ⁻¹)	$H_{ m s}$ / m	$T_{ m p}$ / s
作业工况	1	7	1	2.8
	2	11.4	2.1	5.5
	3	16	3.6	8.1
	4	20	5.6	8.6
	5	24	8.5	9.5
自存工况	6	25	8.7	10.4
	7	30	12 6	12 5

图 3 塔顶位移衰减曲线 Fig. 3 Decay curves of tower top displacement

衣 4 个问风迷下的飞动阻尼比				
Tab. 4 Damping ratios in different wind speed				
风机工况	海况编号	$V_{ m hub}$ /(m • s ⁻¹)	ξ _{aero} / %	
作业工况	1	7	3.71	
	2	11.4	5.46	
	3	16	6.19	
	4	20	6.07	
	5	24	6.14	
自存工况	6	25	0.18	
	7	30	0.21	

由表 4 和图 3 易知,作业工况下的气动阻尼远 大于自存工况下的气动阻尼,且与 Tempel^[18]给出 的 4%的估算值相当.作业工况下,风机在风速为 7 m/s 与 11.4 m/s 时,浆距角相同但风轮转速不同, 风机在风速为 11.4 m/s,16 m/s,20 m/s 和 24 m/s 时,风轮转速相同但浆距角不同;而自存工况各风速 下,风轮停止转动且叶片顺桨^[3].结合上述结果与 其他相关研究的结论^[14-15],易知风轮停止转动和叶 片顺桨是导致自存工况下气动阻尼急剧减小的主要 原因.

基于气动阻尼比建立不同工况下的气动阻尼矩 阵,并结合水动力系数矩阵和系泊刚度矩阵,在频域 内分别建立了考虑气动阻尼与否的运动方程,求解 方程得到各工况下考虑与不考虑气动阻尼的 RAOs,如图4所示.由于气动阻尼主要阻碍纵荡和 纵摇运动^[6],故仅给出上述两个自由度的 RAOs. 主要频响范围在 0.5 rad/s 内,为便于识图仅绘出 0.03~0.5 rad/s 内的结果.

为分析气动阻尼影响的相对值,定义如式(15) 所示的 RAOs 峰值相对差值.表5给出了不同风速 下 RAOs 峰值的相对差值.

$$\zeta = \frac{p_0 - p_{\text{aero}}}{p_0} \tag{15}$$

式中: p_{aero} 和 p_0 分别为考虑与不考虑气动阻尼时 RAOs 的峰值; ζ 为 RAOs 峰值的相对差值.

由图 4 可知,作业工况下气动阻尼能有效降低 纵荡和纵摇运动 RAOs 的峰值,但对非峰值的影响 很小.而自存工况下气动阻尼对 RAOs 的影响不 大.再由表 5 可知,纵摇受气动阻尼的影响比纵荡更 为明显,Roddier^[7]的研究也给出了同样的结论.此 外,分析得到的纵荡和纵摇运动固有频率分别约为 0.05 和 0.213 rad/s,与 Ramachandran^[9]的计算结 果一致.

表 5	不同风速下 RA	AOs 峰值的	相对意	き 値
Tab. 5	Relative different	nce of RAO	peak	values
	in different	wind speed		
	17			

风机工况	海况编号	$V_{ m hub}$ /(m • s ⁻¹)	ζ(surge) /%	ζ(pitch) /%
作业工况	1	7	48.01	81.67
	2	11.4	55.45	84.50
	3	16	59.96	86.54
	4	20	60.18	86.84
	5	24	60.47	86.94
自存工况	6	25	4.26	19.25
	7	30	4.95	21.85

基于 RAOs 和 JONSWAP 海浪谱,通过式(14) 可以计算各海况下考虑气动阻尼与否的浮式平台的 纵荡和纵摇响应谱.限于篇幅,仅给出了第5号海况 下纵荡及纵摇响应谱,如图5所示.

计算各个工况下考虑气动阻尼与否的响应谱零 阶矩,并利用式(16)计算零阶矩相对差值:

$$\varepsilon = \frac{m_0 - m_{\text{aero}}}{m_0} \tag{16}$$

式中:m_{aero}和 m₀分别为考虑与不考虑气动阻尼时的 响应谱零阶矩;ε 为零阶矩相对差值

表 6 和表 7 分别给出了两种工况下各个海况中 考虑气动阻尼与否的纵荡和纵摇响应谱的零阶矩及 对应的零阶矩相对差值.

表 6 纵荡响应谱零阶矩

Tab. 6	Zero orde	r moment of s	surge response	spectrum
风机工况	海况编号	$m_{ m aero} \ /{ m m}^2$	m_0 / m ²	ε / %
作业工况	1	1.49×10^{-5}	1.49×10^{-5}	0.13
	2	5.50×10^{-3}	5.66×10^{-3}	2.91
	3	7.26×10^{-2}	7.74×10^{-2}	6.10
	4	0.249	0.269	7.23
	5	0.734	0.805	8.80
自存工况	6	1.11	1.11	0.09
	7	4.57	4.59	0.37

表 7 纵摇响应谱零阶矩 Tab. 7 Zero order moment of pitch response spectrum

风机工况	海况编号	$m_{ m aero}$ $/{ m rad}^2$	m_0 $/\operatorname{rad}^2$	ε / %
作业工况	1	1.609×10^{-9}	1.612×10^{-9}	0.17
	2	5.603×10^{-7}	5.771×10^{-7}	2.91
	3	6.837×10^{-6}	7.271×10^{-6}	5.97
	4	2.271×10^{-5}	2.443×10^{-5}	7.04
	5	6.433×10^{-5}	7.031×10^{-5}	8.51
自存工况	6	9.479×10^{-5}	9.487 $\times 10^{-5}$	0.08
	7	3.499×10^{-4}	3.514×10^{-4}	0.42

由图 5 可知, 气动阻尼能在一定范围内降低该 海况下纵荡和纵摇响应谱的幅值, 且对响应谱中接 近海浪谱峰频率的成分抑制效果更加明显. 表 6 和 表 7 通过响应谱的零阶矩(即响应谱图形的面积)定 量分析了气动阻尼对响应谱的影响. 由表可知: 作业 工况下 *T*_p大于 5.5 s 的海况中, 响应谱零阶矩相对 差值超过 5%, 气动阻尼对这种情况下的响应谱有 一定影响, 而对作业工况下 *T*_p较小的海况和自存工 况下的响应谱影响很小.

作业工况下,气动阻尼能大幅降低 RAOs 的峰 值,但由于 RAOs 峰值频率和海浪谱峰频率相差较 远,所以气动阻尼对响应谱的影响不如对 RAOs 的 影响明显.作业工况下低海况中的 T_p较小,海浪的 能量在 RAOs 峰值频率范围内分布很少,故这种情 况下气动阻尼对响应谱影响很小;而作业工况下高 海况中的 T_p较大,海浪的能量在低频范围内分布变 多,故这种情况下气动阻尼能对响应谱产生一定影 响.

自存工况下气动阻尼值很小,对 RAOs 峰值影 响并不显著,再考虑到 RAOs 峰值频率和海浪谱峰 频率相差较远,故这种情况下气动阻尼对响应谱的 影响也非常小.

5 结 论

本文以某 Spar 式 5 MW 浮式风机为例,通过对 比考虑气动阻尼与否两种情况下浮式平台的 RAOs 和响应谱,在频域内按照不同的工况分析了气动阻 尼对浮式平台响应的影响,并明确了影响气动阻尼 的关键因素,得到如下结论:

1) 作业工况下, 气动阻尼能有效降低浮式风机 纵荡和纵摇 RAOs 的峰值, 且对纵摇运动的抑制效 果更加明显; 自存工况下, 气动阻尼对 RAOs 的峰 值影响较小.

2)作业工况下,在海浪谱峰周期较大的高海况 中,气动阻尼能在一定程度上减小响应谱的幅值和 零阶矩,且对响应谱中接近海浪谱峰频率的成分抑 制效果更明显;作业工况下的低海况中和自存工况 下,气动阻尼对响应谱的影响不显著.

3)结合相关研究结论^[14-15],可知:风轮停止转 动和叶片顺桨后气动阻尼急剧减小,转速和桨距角 对气动阻尼有显著影响.作业工况下气动阻尼比在 3%~6%之间,自存工况气动阻尼比小了一个数 量级.

参考文献

- BULDER B, VAN HEES M T, HENDERSON A, et al. Study to feasibility of and boundary conditions for floating offshore wind turbines[R]. Barneveld: Lagerway, 2002: 87-94.
- [2] 唐友刚,李嘉文,曹菡,等.新型海上风机浮式平台运动的频 域分析[J].天津大学学报:自然科学与工程技术版,2013, 46(10):879-884.

TANG Yougang, LI Jiawen, CAO Han, *et al.* Frequency domain analysis of motion of floating platform for offshore wind turbine[J]. Journal of Tianjin University: Science and Technology, 2013, 46(10): 879-884. (In Chinese)

- [3] KÜHN M J. Dynamics and design optimisation of offshore wind energy conversion systems[D]. Delft: Delft Wind Energy Institute, Delft University of Technology, 2001: 161-179.
- [4] SALZMANN D, VAN DER TEMPEL J. Aerodynamic damping in the design of support structures for offshore wind turbines[C]// Proceedings of the Copenhagen Offshore Conference. Copenhagen: European Wind Energy Association, 2005: 1-9.
- [5] 邓露,肖志颖,黄民希,等.考虑流固耦合的近海风机动力响 应数值计算[J].湖南大学学报:自然科学版,2015,42(7):

1 - 8.

DENG Lu, XIAO Zhiying, HUANG Minxi, *et al.* Numerical simulation of dynamic response for offshore wind turbines including fluid-structure interaction[J]. Journal of Hunan U-niversity: Natural Science, 2015, 42(7): 1-8. (In Chinese)

- [6] KARIMIRAD M, MOAN T. Effect of aerodynamic and hydrodynamic damping on dynamic response of a spar type floating wind turbine[C]//Proceedings of the European Wind Energy Conference EWEC 2010. Warsaw, Poland: European Wind Energy Association, 2010; 2-10.
- [7] RODDIER D, CERMELLIC C, AUBAULT A, et al. Wind float: a floating foundation for offshore wind turbines [J]. Journal of Renewable and Sustainable Energy, 2010, 2(3): 033104.
- [8] WAYMAN E, SCLAVOUNOS P, BUTTERFIELD S, et al. Coupled dynamic modeling of floating wind turbine systems
 [C]//Proceedings of the Offshore Technology Conference. Houston: OTC Committee, 2006: 2-23.
- [9] RAMACHANDRAN G, ROBERTSON A, JONKMAN J, et al. Investigation of response amplitude operators for floating offshore wind turbines [C]//Proceedings of the Twenty third International Offshore and Polar Engineering Conference. Anchorage: International Society of Offshore and Polar Engineers, 2013: 2-5.
- [10] LEISHMAN J G, BEDDOES T S. A semi-empirical model for dynamic stall[J]. Journal of the American Helicopter Society, 1989, 34(3):3-17.
- [11] JONKMAN J, BUTTERFIELD S, MUSIAL W, et al. Definition of a 5MW reference wind turbine for offshore system development[R]. Golden, Colorado: National Renewable Energy Laboratory, 2009; 5-16.

- [12] IEC 61400-3 Wind turbines-Part 3: design requirements for offshore wind turbines [S]. Geneva: International Electrotechnical Commission, 2009: 21-32.
- [13] 刘雄,李钢强,陈严,等.水平轴风力机筒型塔架动态响应分析[J].太阳能学报,2010,31(4):412-417.
 LIU Xiong, LI Gangqiang, CHEN Yan, *et al.* Dynamic response analysis of the tubular tower of horizontal axis wind turbines[J]. Acta Energiae Solaris Sinica, 2010, 31(4):412 -417. (In Chinese)
- [14] FRERIS LEON L, FRERIS L L. Wind energy conversion systems[M]. London: Prentice Hall, 1990: 85-93.
- [15] 郭洪澈,李钢强,刘雄,等. 气动阻尼对海上风力机筒形塔架的影响[J]. 太阳能学报,2013,34(8):1450-1457.
 GUO Hongche, LI Gangqiang, LIU Xiong, et al. Influence of aerodynamic damping on tubular tower of offshore horizontal axis wind turbines[J]. Acta Energiae Solaris Sinica, 2013, 34 (8):1450-1457. (In Chinese)
- [16] 李彬彬.新型深吃水多立柱平台的水动力与运动响应研究 [D].哈尔滨:哈尔滨工业大学土木工程学院,2011:78-80.

LI Binbin. Investigation on hydrodynamics and motion performance of an innovative deep draft multi-spar platform[D]. Harbin: College of Civil Engineering, Harbin Institute of Technology, 2011: 78-80. (In Chinese)

- [17] JONKMAN J M. Definition of the floating system for phase IV of OC3[R]. Golden, Colorado: National Renewable Energy Laboratory, 2010: 4-21.
- [18] VAN DER TEMPEL J. Design of support structures for offshore wind turbines[D]. Delft: Delft Wind Energy Institute, Delft University of Technology, 2006: 107-132.